Zhou Qunfei, Liu Zhen-Fei, Marks Tobin J, Darancet Pierre
Materials Research Science and Engineering Center, Northwestern University, Evanston, Illinois 60208, United States.
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States.
J Phys Chem A. 2021 May 20;125(19):4055-4061. doi: 10.1021/acs.jpca.0c10766. Epub 2021 May 7.
We compute the electronic structure and optical excitation energies of metal-free and transition-metal phthalocyanines (HPc and MPc for M = Fe, Co, Ni, Cu, Zn, Mg) using density functional theory with optimally tuned range-separated hybrid functionals (OT-RSH). We show that the OT-RSH approach provides photoemission spectra in quantitative agreement with experiments as well as optical band gaps within 10% of their experimental values, capturing the interplay of localized d-states and delocalized π-π* states for these organometallic compounds. We examine the tunability of MPcs and HPc through fluorination, resulting in quasi-rigid shifts of the molecular orbital energies by up to 0.7 eV. Our comprehensive data set provides a new computational benchmark for gas-phase phthalocyanines, significantly improving upon other density-functional-theory-based approaches.
我们使用具有最佳调谐范围分离杂化泛函(OT-RSH)的密度泛函理论,计算了无金属酞菁和过渡金属酞菁(M = Fe、Co、Ni、Cu、Zn、Mg时分别为HPc和MPc)的电子结构和光激发能。我们表明,OT-RSH方法提供的光电子能谱与实验结果在定量上一致,并且光学带隙在其实验值的10%以内,捕捉到了这些有机金属化合物中局域d态和离域π-π*态之间的相互作用。我们研究了通过氟化对MPcs和HPc的可调谐性,导致分子轨道能量的准刚性位移高达0.7 eV。我们的综合数据集为气相酞菁提供了一个新的计算基准,显著优于其他基于密度泛函理论的方法。