Yuan Dong, Wang He-Ran, Wang Zhong, Deng Dong-Ling
Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People's Republic of China.
Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.
Phys Rev Lett. 2021 Apr 23;126(16):160401. doi: 10.1103/PhysRevLett.126.160401.
We propose a machine-learning inspired variational method to obtain the Liouvillian gap, which plays a crucial role in characterizing the relaxation time and dissipative phase transitions of open quantum systems. By using "spin bi-base mapping," we map the density matrix to a pure restricted-Boltzmann-machine (RBM) state and transform the Liouvillian superoperator to a rank-two non-Hermitian operator. The Liouvillian gap can be obtained by a variational real-time evolution algorithm under this non-Hermitian operator. We apply our method to the dissipative Heisenberg model in both one and two dimensions. For the isotropic case, we find that the Liouvillian gap can be analytically obtained and in one dimension even the whole Liouvillian spectrum can be exactly solved using the Bethe ansatz method. By comparing our numerical results with their analytical counterparts, we show that the Liouvillian gap could be accessed by the RBM approach efficiently to a desirable accuracy, regardless of the dimensionality and entanglement properties.
我们提出一种受机器学习启发的变分方法来获取刘维尔间隙,它在表征开放量子系统的弛豫时间和耗散相变中起着关键作用。通过使用“自旋双基映射”,我们将密度矩阵映射到一个纯受限玻尔兹曼机(RBM)态,并将刘维尔超算符变换为一个秩为二的非厄米算符。在此非厄米算符下,可通过变分实时演化算法获得刘维尔间隙。我们将我们的方法应用于一维和二维的耗散海森堡模型。对于各向同性情况,我们发现刘维尔间隙可以通过解析方法获得,并且在一维情况下,甚至可以使用贝塞耳假设方法精确求解整个刘维尔谱。通过将我们的数值结果与其解析对应结果进行比较,我们表明无论维度和纠缠特性如何,RBM 方法都能有效地以所需精度获得刘维尔间隙。