Bouchoule I, Dubail J
Laboratoire Charles Fabry, Institut d'Optique, CNRS, Université Paris-Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau Cedex, France.
Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France.
Phys Rev Lett. 2021 Apr 23;126(16):160603. doi: 10.1103/PhysRevLett.126.160603.
In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as ∼1/|p|^{4} at large momentum p. Tan's relation connects the amplitude of that 1/|p|^{4} tail to the adiabatic derivative of the energy with respect to the coupling constant or scattering length of the gas. Here it is shown that the relation breaks down in the one-dimensional Bose gas with contact repulsion, for a peculiar class of stationary states. These states exist thanks to the infinite number of conserved quantities in the system, and they are characterized by a rapidity distribution that itself decreases as 1/|p|^{4}. In the momentum distribution, that rapidity tail adds to the usual Tan contact term. Remarkably, atom losses, which are ubiquitous in experiments, do produce such peculiar states. The development of the tail of the rapidity distribution originates from the ghost singularity of the wave function immediately after each loss event. This phenomenon is discussed for arbitrary interaction strengths, and it is supported by exact calculations in the two asymptotic regimes of infinite and weak repulsion.
在具有接触排斥的量子气体中,原子动量分布在大动量(p)时通常按(\sim1/|p|^{4})衰减。谭的关系将该(1/|p|^{4})尾部的幅度与气体能量相对于耦合常数或散射长度的绝热导数联系起来。这里表明,对于一类特殊的定态,该关系在具有接触排斥的一维玻色气体中失效。这些态由于系统中存在无限多个守恒量而存在,并且它们的特征是其快度分布本身按(1/|p|^{4})减小。在动量分布中,该快度尾部加到通常的谭接触项上。值得注意的是,实验中普遍存在的原子损失确实会产生这种特殊的态。快度分布尾部的发展源于每次损失事件后波函数的鬼奇点。针对任意相互作用强度讨论了这一现象,并得到了无限排斥和弱排斥这两个渐近区域的精确计算的支持。