Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany.
Bruker Daltonik GmbH, Bremen, Germany.
Physiol Plant. 2021 Nov;173(3):680-697. doi: 10.1111/ppl.13458. Epub 2021 May 27.
Plant genebanks constitute a key resource for breeding to ensure crop yield under changing environmental conditions. Because of their roles in a range of stress responses, phenylpropanoids are promising targets. Phenylpropanoids comprise a wide array of metabolites; however, studies regarding their diversity and the underlying genes are still limited for cereals. The assessment of barley diversity via genotyping-by-sequencing is in rapid progress. Exploring these resources by integrating genetic association studies to in-depth metabolomic profiling provides a valuable opportunity to study barley phenylpropanoid metabolism; but poses a challenge by demanding large-scale approaches. Here, we report an LC-PDA-MS workflow for barley high-throughput metabotyping. Without prior construction of a species-specific library, this method produced phenylpropanoid-enriched metabotypes with which the abundance of putative metabolic features was assessed across hundreds of samples in a single-processed data matrix. The robustness of the analytical performance was tested using a standard mix and extracts from two selected cultivars: Scarlett and Barke. The large-scale analysis of barley extracts showed (1) that barley flag leaf profiles were dominated by glycosylation derivatives of isovitexin, isoorientin, and isoscoparin; (2) proved the workflow's capability to discriminate within genotypes; (3) highlighted the role of glycosylation in barley phenylpropanoid diversity. Using the barley S42IL mapping population, the workflow proved useful for metabolic quantitative trait loci purposes. The protocol can be readily applied not only to explore the barley phenylpropanoid diversity represented in genebanks but also to study species whose profiles differ from those of cereals: the crop Helianthus annuus (sunflower) and the model plant Arabidopsis thaliana.
植物基因库是确保作物在不断变化的环境条件下产量的关键资源。由于它们在一系列胁迫反应中的作用,苯丙素类化合物是很有前途的目标。苯丙素类化合物包含广泛的代谢物;然而,关于它们的多样性和潜在基因的研究对于谷物来说仍然有限。通过测序进行的大麦多样性评估正在迅速推进。通过整合遗传关联研究和深入的代谢组学分析来探索这些资源,为研究大麦苯丙素代谢提供了宝贵的机会;但由于需要大规模的方法,这也带来了挑战。在这里,我们报告了一种用于大麦高通量代谢组学的 LC-PDA-MS 工作流程。在没有事先构建物种特异性文库的情况下,该方法产生了富含苯丙素的代谢型,通过这种方法,可以在单个处理数据矩阵中评估数百个样品中的假定代谢特征的丰度。使用标准混合物和从两个选定品种(Scarlett 和 Barke)中提取的物质来测试分析性能的稳健性。对大麦提取物的大规模分析表明:(1)大麦旗叶图谱主要由异荭草素、异牡荆素和异獐牙菜素的糖苷化衍生物组成;(2)证明了该工作流程区分基因型内差异的能力;(3)突出了糖苷化在大麦苯丙素多样性中的作用。使用大麦 S42IL 作图群体,该工作流程证明在代谢数量性状位点研究方面非常有用。该方案不仅可以用于探索基因库中代表的大麦苯丙素多样性,还可以用于研究与谷物图谱不同的物种:作物向日葵(Helianthus annuus)和模式植物拟南芥(Arabidopsis thaliana)。