Suppr超能文献

采用 UHPLC 串联线性离子阱-Orbitrap 质谱联用技术结合基于特征的分子网络技术系统地表征麻黄汤中的化学成分。

Systematic characterization of chemical constituents in Mahuang decoction by UHPLC tandem linear ion trap-Orbitrap mass spectrometry coupled with feature-based molecular networking.

机构信息

School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.

Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.

出版信息

J Sep Sci. 2021 Jul;44(14):2717-2727. doi: 10.1002/jssc.202100121. Epub 2021 May 29.

Abstract

Comprehensive characterization of traditional Chinese medicine prescriptions has long been a hurdle due to the chemical complexity and the lack of analytical tools. Mahuang decoction is a well-known traditional Chinese medicine prescription widely used for sweating and relieving the exterior, relieving cough and asthma, but it was insufficiently chemically scrutinized. In this study, the chemical component information of Mahuang decoction was investigated by ultrahigh-performance liquid chromatography tandem linear ion trap-Orbitrap mass spectrometry. A new data processing tool, feature-based molecular networking, was introduced for grouping and elucidating the compounds. In this way, 156 chemical components were identified or tentatively characterized, including alkaloids, triterpenoid saponins, flavanone-O-glycosides, flavone-C-glycosides, and procyanidins. Thus, this research provides a solid foundation for further development of Mahuang decoction, and the adopted method is expected to be applied to other traditional Chinese medicine prescriptions.

摘要

由于化学成分复杂且缺乏分析工具,全面表征中药方剂一直是一个难题。麻黄汤是一种广为人知的中药方剂,常用于发汗解表、止咳平喘,但对其化学成分的研究还不够充分。本研究采用超高效液相色谱串联线性离子阱-Orbitrap 质谱法研究了麻黄汤的化学成分信息。引入了一种新的数据处理工具——基于特征的分子网络,用于对化合物进行分组和解析。通过这种方法,共鉴定或推测出 156 种化学成分,包括生物碱、三萜皂苷、黄烷酮-O-糖苷、黄酮-C-糖苷和原花青素。因此,本研究为进一步开发麻黄汤提供了坚实的基础,所采用的方法有望应用于其他中药方剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验