Laboratoire d'Étude des Résidus et Contaminants dans les Aliments (LABERCA), Oniris, INRAE, F-44307 Nantes, France.
Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
Environ Int. 2021 Oct;155:106610. doi: 10.1016/j.envint.2021.106610. Epub 2021 May 6.
Thousands of chemicals are potentially contaminating the environment and food resources, covering a wide spectrum of molecular structures, physico-chemical properties, sources, environmental behavior and toxic profiles. Beyond the description of the individual chemicals, characterizing contaminant mixtures in related matrices has become a major challenge in ecological and human health risk assessments. Continuous analytical developments, in the fields of targeted (TA) and non-targeted analysis (NTA), have resulted in ever larger sets of data on associated chemical profiles. More than ever, the implementation of advanced data analysis strategies is essential to elucidate profiles and extract new knowledge from these large data sets. Specifically focusing on the data analysis step, this review summarizes the recent progress in integrating data analysis tools into TA and NTA workflows to address the challenging characterization of chemical mixtures in environmental and food matrices. As fish matrices are relevant in both aquatic pollution and consumer exposure perspectives, fish was chosen as the main theme to illustrate this review, although the present document is equally relevant to other food and environmental matrices. The key features of TA and NTA data sets were reviewed to illustrate the challenges associated with their analysis. Advanced filtering strategies to mine NTA data sets are presented, with a particular focus on chemical filters and discriminant analysis. Further, the applications of supervised and unsupervised multivariate analysis methods to characterize exposure to chemical mixtures, and their associated challenges, is discussed.
数千种化学物质可能正在污染环境和食物资源,这些化学物质涵盖了广泛的分子结构、物理化学性质、来源、环境行为和毒性特征。除了描述个别化学物质外,描述相关基质中污染物混合物已成为生态和人类健康风险评估中的主要挑战。在靶向分析 (TA) 和非靶向分析 (NTA) 领域的持续分析发展,导致与化学特征相关的数据集越来越大。比以往任何时候都更需要实施先进的数据分析策略,以阐明这些大数据集中的特征并从中提取新知识。本综述特别关注数据分析步骤,总结了将数据分析工具集成到 TA 和 NTA 工作流程中的最新进展,以解决环境和食物基质中化学混合物的挑战性特征描述问题。由于鱼类基质在水生污染和消费者暴露方面都很重要,因此选择鱼类作为主要主题来说明本综述,尽管本文件同样适用于其他食物和环境基质。综述了 TA 和 NTA 数据集的主要特征,以说明与它们的分析相关的挑战。提出了用于挖掘 NTA 数据集的高级过滤策略,特别关注化学过滤器和判别分析。此外,还讨论了监督和无监督多元分析方法在表征化学混合物暴露及其相关挑战方面的应用。