Suppr超能文献

相似文献

1
Development of a -based counterselectable system for targeted gene deletion in .
J Zhejiang Univ Sci B. 2021 May 15;22(5):383-396. doi: 10.1631/jzus.B2000606.
2
pyrF as a Counterselectable Marker for Unmarked Genetic Manipulations in Treponema denticola.
Appl Environ Microbiol. 2015 Dec 18;82(4):1346-52. doi: 10.1128/AEM.03704-15. Print 2016 Feb 15.
4
Counterselection system for Geobacillus kaustophilus HTA426 through disruption of pyrF and pyrR.
Appl Environ Microbiol. 2012 Oct;78(20):7376-83. doi: 10.1128/AEM.01669-12. Epub 2012 Aug 10.
5
Characterization of Treponema denticola pyrF encoding orotidine-5'-monophosphate decarboxylase.
FEMS Microbiol Lett. 2007 Mar;268(2):261-7. doi: 10.1111/j.1574-6968.2006.00589.x. Epub 2006 Dec 20.
7
Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker.
Mol Microbiol. 2000 Feb;35(3):667-76. doi: 10.1046/j.1365-2958.2000.01739.x.
9
Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant.
Appl Environ Microbiol. 2010 Oct;76(19):6591-9. doi: 10.1128/AEM.01484-10. Epub 2010 Aug 6.
10
Improvement of ClosTron for successive gene disruption in Clostridium cellulolyticum using a pyrF-based screening system.
Appl Microbiol Biotechnol. 2014 Jan;98(1):313-23. doi: 10.1007/s00253-013-5330-y. Epub 2013 Nov 5.

引用本文的文献

1
Construction and Characterization of an lpxM-Deficient Strain Using a pyrF/5-FOA Counterselection System.
Infect Drug Resist. 2025 Jun 27;18:3175-3185. doi: 10.2147/IDR.S523844. eCollection 2025.
2
A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering.
Nat Commun. 2023 Oct 4;14(1):6193. doi: 10.1038/s41467-023-41973-5.
5
Enhanced Oxytetracycline Production by in Submerged Co-Cultures with .
Molecules. 2021 Oct 5;26(19):6036. doi: 10.3390/molecules26196036.

本文引用的文献

1
The Application of Regulatory Cascades in : Yield Enhancement and Metabolite Mining.
Front Microbiol. 2020 Mar 24;11:406. doi: 10.3389/fmicb.2020.00406. eCollection 2020.
2
Regulation of Antibiotic Production by Signaling Molecules in .
Front Microbiol. 2019 Dec 19;10:2927. doi: 10.3389/fmicb.2019.02927. eCollection 2019.
3
Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces.
Nat Biotechnol. 2020 Jan;38(1):76-83. doi: 10.1038/s41587-019-0335-4. Epub 2019 Dec 9.
6
Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host.
Appl Microbiol Biotechnol. 2019 Aug;103(16):6645-6655. doi: 10.1007/s00253-019-09970-1. Epub 2019 Jun 25.
7
CRISPR/Cas9-Based Editing of for Discovery, Characterization, and Production of Natural Products.
Front Microbiol. 2018 Jul 24;9:1660. doi: 10.3389/fmicb.2018.01660. eCollection 2018.
8
CRISPR/dCas9-Mediated Multiplex Gene Repression in Streptomyces.
Biotechnol J. 2018 Sep;13(9):e1800121. doi: 10.1002/biot.201800121. Epub 2018 Jul 4.
9
Streptomyces species: Ideal chassis for natural product discovery and overproduction.
Metab Eng. 2018 Nov;50:74-84. doi: 10.1016/j.ymben.2018.05.015. Epub 2018 May 28.
10
Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces.
Microb Cell Fact. 2017 Sep 26;16(1):164. doi: 10.1186/s12934-017-0781-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验