Suppr超能文献

一种用于量化钆塞酸增强 MRI 中微血管肝功能的模型选择框架:在健康肝脏、病变组织和肝细胞癌中的应用。

A model selection framework to quantify microvascular liver function in gadoxetate-enhanced MRI: Application to healthy liver, diseased tissue, and hepatocellular carcinoma.

机构信息

Division of Cancer Sciences, Quantitative Biomedical Imaging Laboratory, University of Manchester, Manchester, UK.

The Christie NHS Foundation Trust, Manchester, UK.

出版信息

Magn Reson Med. 2021 Oct;86(4):1829-1844. doi: 10.1002/mrm.28798. Epub 2021 May 11.

Abstract

PURPOSE

We introduce a novel, generalized tracer kinetic model selection framework to quantify microvascular characteristics of liver and tumor tissue in gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI).

METHODS

Our framework includes a hierarchy of nested models, from which physiological parameters are derived in 2 regimes, corresponding to the active transport and free diffusion of gadoxetate. We use simulations to show the sensitivity of model selection and parameter estimation to temporal resolution, time-series duration, and noise. We apply the framework in 8 healthy volunteers (time-series duration up to 24 minutes) and 10 patients with hepatocellular carcinoma (6 minutes).

RESULTS

The active transport regime is preferred in 98.6% of voxels in volunteers, 82.1% of patients' non-tumorous liver, and 32.2% of tumor voxels. Interpatient variations correspond to known co-morbidities. Simulations suggest both datasets have sufficient temporal resolution and signal-to-noise ratio, while patient data would be improved by using a time-series duration of at least 12 minutes.

CONCLUSIONS

In patient data, gadoxetate exhibits different kinetics: (a) between liver and tumor regions and (b) within regions due to liver disease and/or tumor heterogeneity. Our generalized framework selects a physiological interpretation at each voxel, without preselecting a model for each region or duplicating time-consuming optimizations for models with identical functional forms.

摘要

目的

我们提出了一种新颖的、广义的示踪剂动力学模型选择框架,用于量化钆塞酸增强动态对比增强磁共振成像(DCE-MRI)中肝脏和肿瘤组织的微血管特征。

方法

我们的框架包括一个嵌套模型的层次结构,从这些模型中可以推导出两个区域的生理参数,分别对应于钆塞酸的主动转运和自由扩散。我们使用模拟来显示模型选择和参数估计对时间分辨率、时间序列持续时间和噪声的敏感性。我们在 8 名健康志愿者(时间序列持续时间长达 24 分钟)和 10 名肝细胞癌患者(6 分钟)中应用该框架。

结果

在志愿者的 98.6%、非肿瘤性肝脏患者的 82.1%和肿瘤患者的 32.2%的体素中,优先选择主动转运模式。个体间的差异与已知的合并症相对应。模拟表明,两个数据集都具有足够的时间分辨率和信噪比,而患者数据如果使用至少 12 分钟的时间序列持续时间将会得到改善。

结论

在患者数据中,钆塞酸表现出不同的动力学:(a)在肝脏和肿瘤区域之间,(b)在肝脏疾病和/或肿瘤异质性导致的区域内。我们的广义框架在每个体素中选择生理解释,而无需为每个区域预先选择模型,也无需为具有相同功能形式的模型重复耗时的优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验