Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
J Neurophysiol. 2021 Jun 1;125(6):2339-2355. doi: 10.1152/jn.00584.2020. Epub 2021 May 12.
The activity of central pattern-generating networks (CPGs) may change under the control exerted by various neurotransmitters and modulators to adapt its behavioral outputs to different environmental demands. Although the mechanisms underlying this control have been well established in invertebrates, most of their synaptic and cellular bases are not yet well understood in vertebrates. , a pulse-type gymnotiform electric fish, provides a well-suited vertebrate model to investigate these mechanisms. emits rhythmic and stereotyped electric organ discharges (EODs), which function in both perception and communication, under the command of an electromotor CPG. This nucleus is composed of electrotonically coupled intrinsic pacemaker cells, which pace the rhythm, and bulbospinal projecting relay cells that contribute to organize the pattern of the muscle-derived effector activation that produce the EOD. Descending influences target CPG neurons to produce adaptive behavioral electromotor responses to different environmental challenges. We used electrophysiological and pharmacological techniques in brainstem slices of to investigate the underpinnings of the fast transmitter control of its electromotor CPG. We demonstrate that pacemaker, but not relay cells, are endowed with ionotropic and metabotropic glutamate receptor subtypes. We also show that glutamatergic control of the CPG likely involves two types of synapses contacting pacemaker cells, one type containing both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and -methyl-d-aspartate (NMDA) receptors and the other one only-NMDA receptor. Fast neurotransmitter control of vertebrate CPGs seems to exploit the kinetics of the involved postsynaptic receptors to command different behavioral outputs. The prospect of common neural designs to control CPG activity in vertebrates is discussed. Underpinnings of neuromodulation of central pattern-generating networks (CPG) have been well characterized in many species. The effects of fast neurotransmitter systems remain, however, poorly understood. This research uses in vitro electrophysiological and pharmacological techniques to show that the neurotransmitter control of a vertebrate CPG in gymnotiform fish involves the convergence of only-NMDA and AMPA-NMDA glutamatergic synapses onto neurons that pace the rhythm. These inputs may organize different behavioral outputs according to their distinct functional properties.
中枢模式发生器(CPG)的活动可能会在各种神经递质和调质的控制下发生变化,以使其行为输出适应不同的环境需求。虽然这种控制的机制在无脊椎动物中已经得到很好的证实,但在脊椎动物中,它们的大部分突触和细胞基础还没有得到很好的理解。,一种脉冲型电鳗科电鱼,为研究这些机制提供了一个很好的脊椎动物模型。 发出有节奏和刻板的电器官放电(EOD),这些放电在电运动中枢模式发生器的指挥下,既具有感知功能,也具有通讯功能。这个核由电耦合的内在起搏细胞组成,这些细胞起搏节律,以及球茎脊髓投射中继细胞,它们有助于组织产生 EOD 的肌肉衍生效应器激活的模式。下行影响靶向 CPG 神经元,以产生对不同环境挑战的适应性电动反应。我们使用电生理和药理学技术在 的脑桥切片中研究了其电运动中枢模式发生器快速递质控制的基础。我们证明,起搏细胞而不是中继细胞具有离子型和代谢型谷氨酸受体亚型。我们还表明,CPG 的谷氨酸能控制可能涉及两种类型的突触接触起搏细胞,一种类型包含 α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)和 -甲基-d-天冬氨酸(NMDA)受体,另一种类型只含有-NMDA 受体。脊椎动物 CPG 的快速神经递质控制似乎利用了涉及的突触后受体的动力学来指挥不同的行为输出。讨论了在脊椎动物中控制 CPG 活动的共同神经设计的前景。在许多物种中,中枢模式发生器(CPG)的神经调制基础已经得到了很好的描述。然而,快速神经递质系统的影响仍然知之甚少。这项研究使用体外电生理和药理学技术表明,电鳗科鱼类的脊椎动物 CPG 的神经递质控制涉及仅-NMDA 和 AMPA-NMDA 谷氨酸能突触的会聚到起搏节律的神经元上。这些输入可以根据其不同的功能特性来组织不同的行为输出。