School of Arts, Sciences and Humanities (EACH), University of Sao Paulo (USP), Sao Paulo, SP, 03828-000, Brazil.
Department of Psychiatry, University of Sao Paulo's School of Medicine (FMUSP), Sao Paulo, SP, 05403-903, Brazil.
Sci Rep. 2021 May 12;11(1):10131. doi: 10.1038/s41598-021-89023-8.
An advantage of using eye tracking for diagnosis is that it is non-invasive and can be performed in individuals with different functional levels and ages. Computer/aided diagnosis using eye tracking data is commonly based on eye fixation points in some regions of interest (ROI) in an image. However, besides the need for every ROI demarcation in each image or video frame used in the experiment, the diversity of visual features contained in each ROI may compromise the characterization of visual attention in each group (case or control) and consequent diagnosis accuracy. Although some approaches use eye tracking signals for aiding diagnosis, it is still a challenge to identify frames of interest when videos are used as stimuli and to select relevant characteristics extracted from the videos. This is mainly observed in applications for autism spectrum disorder (ASD) diagnosis. To address these issues, the present paper proposes: (1) a computational method, integrating concepts of Visual Attention Model, Image Processing and Artificial Intelligence techniques for learning a model for each group (case and control) using eye tracking data, and (2) a supervised classifier that, using the learned models, performs the diagnosis. Although this approach is not disorder-specific, it was tested in the context of ASD diagnosis, obtaining an average of precision, recall and specificity of 90%, 69% and 93%, respectively.
使用眼动追踪进行诊断的一个优势在于,它是非侵入性的,可以在不同功能水平和年龄的个体中进行。使用眼动追踪数据的计算机/辅助诊断通常基于图像中某些感兴趣区域(ROI)的眼注视点。然而,除了需要在实验中使用的每个图像或视频帧中进行每个 ROI 划分之外,每个 ROI 中包含的视觉特征的多样性可能会影响每个组(病例或对照组)中视觉注意力的特征描述,从而影响诊断的准确性。尽管有些方法使用眼动追踪信号来辅助诊断,但当使用视频作为刺激时,识别感兴趣的帧并从视频中选择相关特征仍然是一个挑战。这在自闭症谱系障碍(ASD)诊断的应用中尤为明显。为了解决这些问题,本文提出了:(1)一种计算方法,结合视觉注意模型、图像处理和人工智能技术的概念,使用眼动追踪数据为每个组(病例和对照组)学习模型;(2)一个有监督的分类器,使用学习到的模型进行诊断。虽然这种方法不是针对特定疾病的,但它在 ASD 诊断的背景下进行了测试,分别获得了 90%、69%和 93%的平均精度、召回率和特异性。
BMC Med Inform Decis Mak. 2023-12-14
J Affect Disord. 2024-8-1
Stud Health Technol Inform. 2020-6-16
Biomolecules. 2023-12-29
BMC Med Inform Decis Mak. 2023-12-14
Rev Paul Pediatr. 2023
Annu Rev Biomed Data Sci. 2023-8-10
Front Psychiatry. 2022-7-14
Diagnostics (Basel). 2022-2-17
Nat Rev Dis Primers. 2020-1-16
Child Adolesc Psychiatr Clin N Am. 2019-4-4
J Autism Dev Disord. 2019-1
Comput Math Methods Med. 2018-5-20
Dev Med Child Neurol. 2016-2