文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于眼动追踪的视觉注意模型的计算机辅助自闭症诊断。

Computer-aided autism diagnosis based on visual attention models using eye tracking.

机构信息

School of Arts, Sciences and Humanities (EACH), University of Sao Paulo (USP), Sao Paulo, SP, 03828-000, Brazil.

Department of Psychiatry, University of Sao Paulo's School of Medicine (FMUSP), Sao Paulo, SP, 05403-903, Brazil.

出版信息

Sci Rep. 2021 May 12;11(1):10131. doi: 10.1038/s41598-021-89023-8.


DOI:10.1038/s41598-021-89023-8
PMID:33980874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8115570/
Abstract

An advantage of using eye tracking for diagnosis is that it is non-invasive and can be performed in individuals with different functional levels and ages. Computer/aided diagnosis using eye tracking data is commonly based on eye fixation points in some regions of interest (ROI) in an image. However, besides the need for every ROI demarcation in each image or video frame used in the experiment, the diversity of visual features contained in each ROI may compromise the characterization of visual attention in each group (case or control) and consequent diagnosis accuracy. Although some approaches use eye tracking signals for aiding diagnosis, it is still a challenge to identify frames of interest when videos are used as stimuli and to select relevant characteristics extracted from the videos. This is mainly observed in applications for autism spectrum disorder (ASD) diagnosis. To address these issues, the present paper proposes: (1) a computational method, integrating concepts of Visual Attention Model, Image Processing and Artificial Intelligence techniques for learning a model for each group (case and control) using eye tracking data, and (2) a supervised classifier that, using the learned models, performs the diagnosis. Although this approach is not disorder-specific, it was tested in the context of ASD diagnosis, obtaining an average of precision, recall and specificity of 90%, 69% and 93%, respectively.

摘要

使用眼动追踪进行诊断的一个优势在于,它是非侵入性的,可以在不同功能水平和年龄的个体中进行。使用眼动追踪数据的计算机/辅助诊断通常基于图像中某些感兴趣区域(ROI)的眼注视点。然而,除了需要在实验中使用的每个图像或视频帧中进行每个 ROI 划分之外,每个 ROI 中包含的视觉特征的多样性可能会影响每个组(病例或对照组)中视觉注意力的特征描述,从而影响诊断的准确性。尽管有些方法使用眼动追踪信号来辅助诊断,但当使用视频作为刺激时,识别感兴趣的帧并从视频中选择相关特征仍然是一个挑战。这在自闭症谱系障碍(ASD)诊断的应用中尤为明显。为了解决这些问题,本文提出了:(1)一种计算方法,结合视觉注意模型、图像处理和人工智能技术的概念,使用眼动追踪数据为每个组(病例和对照组)学习模型;(2)一个有监督的分类器,使用学习到的模型进行诊断。虽然这种方法不是针对特定疾病的,但它在 ASD 诊断的背景下进行了测试,分别获得了 90%、69%和 93%的平均精度、召回率和特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/f880923ff165/41598_2021_89023_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/44df69a55db2/41598_2021_89023_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/876b7b0fc002/41598_2021_89023_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/aeda4583636b/41598_2021_89023_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/f880923ff165/41598_2021_89023_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/44df69a55db2/41598_2021_89023_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/876b7b0fc002/41598_2021_89023_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/aeda4583636b/41598_2021_89023_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/8115570/f880923ff165/41598_2021_89023_Fig4_HTML.jpg

相似文献

[1]
Computer-aided autism diagnosis based on visual attention models using eye tracking.

Sci Rep. 2021-5-12

[2]
Computer-aided autism diagnosis using visual attention models and eye-tracking: replication and improvement proposal.

BMC Med Inform Decis Mak. 2023-12-14

[3]
Classification of Children With Autism and Typical Development Using Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation.

J Med Internet Res. 2021-8-26

[4]
A constellation of eye-tracking measures reveals social attention differences in ASD and the broad autism phenotype.

Mol Autism. 2022-5-4

[5]
Early identification of autism spectrum disorder based on machine learning with eye-tracking data.

J Affect Disord. 2024-8-1

[6]
Learning Scan Paths of Eye Movement in Autism Spectrum Disorder.

Stud Health Technol Inform. 2020-6-16

[7]
Visual Preference for Biological Motion in Children and Adults with Autism Spectrum Disorder: An Eye-Tracking Study.

J Autism Dev Disord. 2021-7

[8]
[Slowing down the flow of facial information enhances facial scanning in children with autism spectrum disorders: A pilot eye tracking study].

Encephale. 2017-2

[9]
Comparison of three different eye-tracking tasks for distinguishing autistic from typically developing children and autistic symptom severity.

Autism Res. 2019-8-1

[10]
Visual Exploration in Autism Spectrum Disorder: Exploring Age Differences and Dynamic Features Using Recurrence Quantification Analysis.

Autism Res. 2018-10-1

引用本文的文献

[1]
ODDM: Integration of SMOTE Tomek with Deep Learning on Imbalanced Color Fundus Images for Classification of Several Ocular Diseases.

J Imaging. 2025-8-18

[2]
Using visual attention estimation on videos for automated prediction of autism spectrum disorder and symptom severity in preschool children.

PLoS One. 2024

[3]
Modified Meta Heuristic BAT with ML Classifiers for Detection of Autism Spectrum Disorder.

Biomolecules. 2023-12-29

[4]
Computer-aided autism diagnosis using visual attention models and eye-tracking: replication and improvement proposal.

BMC Med Inform Decis Mak. 2023-12-14

[5]
Pediatricians' focus of sight at pain assessment during a neonatal heel puncture.

Rev Paul Pediatr. 2023

[6]
Global trends and hotspots in the digital therapeutics of autism spectrum disorders: a bibliometric analysis from 2002 to 2022.

Front Psychiatry. 2023-5-15

[7]
A Review of and Roadmap for Data Science and Machine Learning for the Neuropsychiatric Phenotype of Autism.

Annu Rev Biomed Data Sci. 2023-8-10

[8]
A bibliometric analysis of research trends of artificial intelligence in the treatment of autistic spectrum disorders.

Front Psychiatry. 2022-8-29

[9]
Zebrafish Modeling of Autism Spectrum Disorders, Current Status and Future Prospective.

Front Psychiatry. 2022-7-14

[10]
Investigation of Eye-Tracking Scan Path as a Biomarker for Autism Screening Using Machine Learning Algorithms.

Diagnostics (Basel). 2022-2-17

本文引用的文献

[1]
Autism spectrum disorder.

Nat Rev Dis Primers. 2020-1-16

[2]
Are early visual behavior impairments involved in the onset of autism spectrum disorders? Insights for early diagnosis and intervention.

Eur J Pediatr. 2020-1-4

[3]
Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis.

Lancet Psychiatry. 2019-10

[4]
Depression in Youth with Autism Spectrum Disorder.

Child Adolesc Psychiatr Clin N Am. 2019-4-4

[5]
Applying Eye Tracking to Identify Autism Spectrum Disorder in Children.

J Autism Dev Disord. 2019-1

[6]
Initiation of joint attention and related visual attention processes in infants with autism spectrum disorder: Literature review.

Child Neuropsychol. 2018-7-25

[7]
Computational Techniques for Eye Movements Analysis towards Supporting Early Diagnosis of Alzheimer's Disease: A Review.

Comput Math Methods Med. 2018-5-20

[8]
The geometric preference subtype in ASD: identifying a consistent, early-emerging phenomenon through eye tracking.

Mol Autism. 2018-3-21

[9]
Atypical Visual Saliency in Autism Spectrum Disorder Quantified through Model-Based Eye Tracking.

Neuron. 2015-11-4

[10]
Emotional and behavioural problems in young children with autism spectrum disorder.

Dev Med Child Neurol. 2016-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索