文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过深度学习整合多组学数据,实现癌症预后的精准预测。

Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.

机构信息

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510000, China.

Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China.

出版信息

Comput Biol Med. 2021 Jul;134:104481. doi: 10.1016/j.compbiomed.2021.104481. Epub 2021 May 9.


DOI:10.1016/j.compbiomed.2021.104481
PMID:33989895
Abstract

BACKGROUND: Genomic information is nowadays widely used for precise cancer treatments. Since the individual type of omics data only represents a single view that suffers from data noise and bias, multiple types of omics data are required for accurate cancer prognosis prediction. However, it is challenging to effectively integrate multi-omics data due to the large number of redundant variables but relatively small sample size. With the recent progress in deep learning techniques, Autoencoder was used to integrate multi-omics data for extracting representative features. Nevertheless, the generated model is fragile from data noises. Additionally, previous studies usually focused on individual cancer types without making comprehensive tests on pan-cancer. Here, we employed the denoising Autoencoder to get a robust representation of the multi-omics data, and then used the learned representative features to estimate patients' risks. RESULTS: By applying to 15 cancers from The Cancer Genome Atlas (TCGA), our method was shown to improve the C-index values over previous methods by 6.5% on average. Considering the difficulty to obtain multi-omics data in practice, we further used only mRNA data to fit the estimated risks by training XGboost models, and found the models could achieve an average C-index value of 0.627. As a case study, the breast cancer prognosis prediction model was independently tested on three datasets from the Gene Expression Omnibus (GEO), and shown able to significantly separate high-risk patients from low-risk ones (C-index>0.6, p-values<0.05). Based on the risk subgroups divided by our method, we identified nine prognostic markers highly associated with breast cancer, among which seven genes have been proved by literature review. CONCLUSION: Our comprehensive tests indicated that we have constructed an accurate and robust framework to integrate multi-omics data for cancer prognosis prediction. Moreover, it is an effective way to discover cancer prognosis-related genes.

摘要

背景:如今,基因组信息被广泛用于精确的癌症治疗。由于个体类型的组学数据仅代表单一视角,存在数据噪声和偏差,因此需要多种类型的组学数据来准确预测癌症预后。然而,由于冗余变量数量众多,而样本量相对较小,因此有效地整合多组学数据具有挑战性。随着深度学习技术的最新进展,自动编码器被用于整合多组学数据以提取代表性特征。然而,生成的模型容易受到数据噪声的影响。此外,以前的研究通常侧重于个别癌症类型,而没有对泛癌进行全面测试。在这里,我们采用去噪自动编码器来获取多组学数据的稳健表示,然后使用学习到的代表性特征来估计患者的风险。

结果:通过应用于来自癌症基因组图谱(TCGA)的 15 种癌症,我们的方法在平均水平上比以前的方法提高了 6.5%的 C 指数值。考虑到在实践中难以获得多组学数据,我们进一步仅使用 mRNA 数据通过训练 XGboost 模型来拟合估计的风险,发现模型可以达到 0.627 的平均 C 指数值。作为案例研究,我们将乳腺癌预后预测模型独立地在三个来自基因表达综合数据库(GEO)的数据集上进行了测试,并发现该模型能够显著地将高危患者与低危患者区分开来(C 指数>0.6,p 值<0.05)。基于我们的方法划分的风险亚组,我们确定了与乳腺癌高度相关的九个预后标志物,其中七个基因已经通过文献综述得到证实。

结论:我们的综合测试表明,我们已经构建了一个准确而稳健的框架,用于整合多组学数据以进行癌症预后预测。此外,这是一种发现癌症预后相关基因的有效方法。

相似文献

[1]
Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.

Comput Biol Med. 2021-7

[2]
Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.

BMC Med Inform Decis Mak. 2020-9-15

[3]
Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer.

BMC Genomics. 2021-3-24

[4]
Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).

BMC Genomics. 2019-12-20

[5]
A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.

J Cancer Res Clin Oncol. 2023-11

[6]
Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.

Methods. 2021-5

[7]
Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.

Methods. 2017-7-15

[8]
Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.

Methods. 2023-5

[9]
Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features.

Genes (Basel). 2019-3-21

[10]
Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.

Clin Cancer Res. 2017-10-5

引用本文的文献

[1]
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.

Brief Bioinform. 2025-7-2

[2]
A review on multi-omics integration for aiding study design of large scale TCGA cancer datasets.

BMC Genomics. 2025-8-22

[3]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[4]
Interpretable graph Kolmogorov-Arnold networks for multi-cancer classification and biomarker identification using multi-omics data.

Sci Rep. 2025-7-29

[5]
A 23-gene multi-omics signature predicts prognosis and treatment response in non-small cell lung cancer.

Discov Oncol. 2025-7-23

[6]
Novel cancer subtyping method guided by tumor-normal sample in latent space of transcriptomic variational autoencoder.

Sci Rep. 2025-7-21

[7]
Iterative clustering algorithm G-DESC-E and pan-cancer key gene analysis based on single-cell sequencing data.

Brief Bioinform. 2025-7-2

[8]
Construction of a prognostic model for endometrial cancer related to programmed cell death using WGCNA and machine learning algorithms.

Front Immunol. 2025-5-20

[9]
MLOmics: Cancer Multi-Omics Database for Machine Learning.

Sci Data. 2025-5-30

[10]
A machine learning approach for multimodal data fusion for survival prediction in cancer patients.

NPJ Precis Oncol. 2025-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索