Suppr超能文献

基于计算机视觉的表面颜色分布分析与感官测试比较:以真空油炸水果为例。

Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study.

机构信息

Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Jalan Prof. Soedarto, SH Tembalang, Semarang, 1269 Jawa Tengah, Indonesia; Center of Nutrition Research, Diponegoro University, Jalan Prof. Soedarto, SH Tembalang, Semarang, 1269 Jawa Tengah, Indonesia.

Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.

出版信息

Food Res Int. 2021 May;143:110230. doi: 10.1016/j.foodres.2021.110230. Epub 2021 Feb 26.

Abstract

Color is a main factor in the perception of food product quality. Food surfaces are often not homogenous at micro-, meso-, and macroscopic scales. This matrix can include a variety of colors that are subject to changes during food processing. These different colors can be analyzed to provides more information than the average color. The objective of this study was to compare color analysis techniques on their ability to differentiate samples, quantify heterogeneity, and flexibility. The included techniques are sensory testing, Hunterlab colorimeter, a commercial CVS (IRIS-Alphasoft), and the custom made CVS (Canon-CVS) in analyzing nine different vacuum fried fruits. Sensory testing was a straightforward method and able to describe color heterogeneity. However, the subjectivity of the panelist is a limitation. Hunterlab was easy and accurate to measure homogeneous samples with high differentiation, without the color distribution information. IRIS-Alphasoft was quick and easy for color distribution analysis, however the closed system is the limit. The Canon-CVS protocol was able to assess the color heterogeneity, able to discriminate samples and flexible. As a take home massage, objective color distribution analysis has a potential to unlock the limitation of traditional color analysis by providing more detailed color distribution information which is important with respect to overall product quality.

摘要

颜色是食品产品质量感知的主要因素。食品表面在微观、介观和宏观尺度上往往不是均匀的。这个基质可以包括各种颜色,这些颜色在食品加工过程中会发生变化。这些不同的颜色可以进行分析,以提供比平均颜色更多的信息。本研究的目的是比较颜色分析技术在区分样品、量化异质性和灵活性方面的能力。所包括的技术是感官测试、亨特实验室比色计、商业 CVS(IRIS-Alphasoft)和定制的 CVS(佳能-CVS),用于分析九种不同的真空油炸水果。感官测试是一种简单直接的方法,能够描述颜色异质性。然而,测试人员的主观性是一个限制。亨特实验室易于使用且能准确测量具有高差异的均匀样品,但无法提供颜色分布信息。IRIS-Alphasoft 非常适合颜色分布分析,然而其封闭系统是一个限制。佳能-CVS 方案能够评估颜色异质性,能够区分样品,具有灵活性。作为一个带回家的信息,客观的颜色分布分析有可能通过提供更详细的颜色分布信息来克服传统颜色分析的局限性,这对于整体产品质量很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验