Suppr超能文献

识别预测弱视患者失随访状态的特征。

Identifying Characteristics Predictive of Lost-to-Follow-Up Status in Amblyopia.

机构信息

From the Harvard Medical School, Boston, Massachusetts.

Department of Ophthalmology, Boston Children's Hospital, Boston, Massachusetts.

出版信息

Am J Ophthalmol. 2021 Oct;230:200-206. doi: 10.1016/j.ajo.2021.05.002. Epub 2021 May 13.

Abstract

PURPOSE

To identify demographic and disease-related characteristics predictive of Lost-to-Follow-Up (LTFU) status in amblyopia treatment and create a risk model for predicting LTFU status.

DESIGN

Retrospective cohort study METHODS: Setting: Single-center, ophthalmology department at Boston Children's Hospital (BCH).

PATIENTS

2037 patients treated for amblyopia at BCH between 2010 and 2014.

OBSERVATION PROCEDURE

LTFU was defined as patients who did not return after initial visit, excluding those who came for second opinion. Multiple variables were tested for association with LTFU status.

OUTCOME MEASURE

Odds ratio of LTFU risk associated with each variable. Multivariate logistic regression was used to create a risk score for predicting LTFU status.

RESULTS

A large proportion of patients (23%) were LTFU after first visit. Older age, nonwhite race, lack of insurance, previous glasses or atropine treatment, and longer requested follow-up intervals were independent predictors of LTFU status. A multivariable risk score was created to predict probability of LTFU (area under the curve 0.68).

CONCLUSIONS

Our comprehensive amblyopia database allows us to predict which patients are more likely to be LTFU after baseline visit and develop strategies to mitigate these effects. These findings may help with practice efficiency and improve patient outcomes in the future by transitioning these analyses to an electronic medical record that could be programmed to provide continually updated decision support for individual patients based on large data sets.

摘要

目的

确定与失访(LTFU)状态相关的人口统计学和疾病特征,并创建预测 LTFU 状态的风险模型。

设计

回顾性队列研究

方法

地点:单中心,波士顿儿童医院(BCH)眼科。

患者

2010 年至 2014 年间在 BCH 接受弱视治疗的 2037 名患者。

观察程序

LTFU 定义为初始就诊后未返回的患者,不包括来复诊的患者。测试了多个变量与 LTFU 状态的关联。

结果测量

与每个变量相关的 LTFU 风险的比值比。多变量逻辑回归用于创建预测 LTFU 状态的风险评分。

结果

很大一部分患者(23%)在首次就诊后失访。年龄较大、非白人种族、缺乏保险、以前戴过眼镜或用过阿托品治疗以及要求随访间隔较长是 LTFU 状态的独立预测因素。创建了一个多变量风险评分来预测 LTFU 的概率(曲线下面积 0.68)。

结论

我们的综合弱视数据库使我们能够预测哪些患者在基线就诊后更有可能失访,并制定策略来减轻这些影响。这些发现可能有助于提高实践效率,并通过将这些分析转移到电子病历中,为个别患者提供基于大数据集的持续更新决策支持,从而在未来改善患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验