Suppr超能文献

骨形态发生蛋白对铁稳态的协调作用:当前的认识和未解决的问题。

Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions.

机构信息

Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Dev Dyn. 2022 Jan;251(1):26-46. doi: 10.1002/dvdy.372. Epub 2021 May 25.

Abstract

Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.

摘要

铁稳态受到严格调控,以平衡红细胞生成和其他重要细胞功能所需的铁,同时防止铁过量造成细胞损伤。肝脏激素铁调素是通过控制唯一已知的哺乳动物铁输出蛋白 Ferroportin 的降解和功能来调节全身铁平衡的主调控因子。肝脏铁调素的表达受到几种信号的协调调控,这些信号表明需要更多或更少的铁,包括血浆和组织铁水平、炎症和红细胞生成驱动。这些信号中的大多数通过调节骨形态发生蛋白 (BMP)-SMAD 途径的活性来调节铁调素的表达,该途径控制铁调素的转录。铁过载和铁缺乏的遗传疾病已经确定了几种肝细胞膜蛋白,这些蛋白在介导 BMP-SMAD 和铁调素对铁的调节反应中起着关键作用。然而,血清和组织铁水平如何被感知以调节 BMP 配体的产生并促进这些蛋白的物理和/或功能相互作用以调节 SMAD 信号和铁调素表达的精确分子机制仍不确定。这篇重要的评论将重点关注目前对肝脏如何感知铁水平以调节 BMP-SMAD 信号,从而调节铁调素表达以控制全身铁稳态的理解和关键未解决的问题。

相似文献

2
Bone morphogenic proteins in iron homeostasis.
Bone. 2020 Sep;138:115495. doi: 10.1016/j.bone.2020.115495. Epub 2020 Jun 23.
3
Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6.
Am J Hematol. 2017 Nov;92(11):1204-1213. doi: 10.1002/ajh.24888. Epub 2017 Sep 25.
4
Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling.
Blood. 2018 Oct 25;132(17):1829-1841. doi: 10.1182/blood-2018-03-841197. Epub 2018 Sep 13.
5
Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis.
Blood. 2010 May 6;115(18):3817-26. doi: 10.1182/blood-2009-05-224808. Epub 2010 Mar 3.
6
Hepcidin and the BMP-SMAD pathway: An unexpected liaison.
Vitam Horm. 2019;110:71-99. doi: 10.1016/bs.vh.2019.01.004. Epub 2019 Feb 10.
7
Liver iron sensing and body iron homeostasis.
Blood. 2019 Jan 3;133(1):18-29. doi: 10.1182/blood-2018-06-815894. Epub 2018 Nov 6.
8
Iron metabolism and iron disorders revisited in the hepcidin era.
Haematologica. 2020 Jan 31;105(2):260-272. doi: 10.3324/haematol.2019.232124. Print 2020.
9
Iron and hepcidin: a story of recycling and balance.
Hematology Am Soc Hematol Educ Program. 2013;2013:1-8. doi: 10.1182/asheducation-2013.1.1.
10
Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice.
Blood. 2011 Oct 13;118(15):4224-30. doi: 10.1182/blood-2011-03-339952. Epub 2011 Aug 12.

引用本文的文献

1
Iron Deficiency Anemia.
Adv Exp Med Biol. 2025;1480:163-178. doi: 10.1007/978-3-031-92033-2_12.
2
Systemic Iron Metabolism.
Adv Exp Med Biol. 2025;1480:33-45. doi: 10.1007/978-3-031-92033-2_3.
3
HFE-Related Hemochromatosis May Be a Primary Kupffer Cell Disease.
Biomedicines. 2025 Mar 10;13(3):683. doi: 10.3390/biomedicines13030683.
5
Porphyria Cutanea Tarda in a Patient With Hereditary Hemochromatosis: A Complex Overlap Disorder.
Cureus. 2024 Nov 20;16(11):e74091. doi: 10.7759/cureus.74091. eCollection 2024 Nov.
6
Live-Cell Invasive Phenotyping Uncovers ALK2 as a Therapeutic Target in LKB1-Mutant Lung Cancer.
Cancer Res. 2024 Nov 15;84(22):3761-3771. doi: 10.1158/0008-5472.CAN-23-2631.
7
Endothelial ZIP8 plays a minor role in BMP6 regulation by iron in mice.
Blood. 2024 Jun 6;143(23):2433-2437. doi: 10.1182/blood.2023023385.
8
Quantitative proteomics and RNA-sequencing of mouse liver endothelial cells identify novel regulators of BMP6 by iron.
iScience. 2023 Nov 22;26(12):108555. doi: 10.1016/j.isci.2023.108555. eCollection 2023 Dec 15.
9
CREB-H is a stress-regulator of hepcidin gene expression during early postnatal development.
J Mol Med (Berl). 2023 Sep;101(9):1113-1124. doi: 10.1007/s00109-023-02344-1. Epub 2023 Jul 26.
10
The Role of Fractalkine in the Regulation of Endometrial Iron Metabolism in Iron Deficiency.
Int J Mol Sci. 2023 Jun 8;24(12):9917. doi: 10.3390/ijms24129917.

本文引用的文献

1
BMP heterodimers signal via distinct type I receptor class functions.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2017952118.
3
Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders.
Br J Haematol. 2021 Jun;193(5):882-893. doi: 10.1111/bjh.17252. Epub 2020 Dec 14.
4
Hemochromatosis proteins are dispensable for the acute hepcidin response to BMP2.
Haematologica. 2020 Oct 1;105(10):e493. doi: 10.3324/haematol.2019.241984.
5
Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms.
Nature. 2020 Oct;586(7831):807-811. doi: 10.1038/s41586-020-2668-z. Epub 2020 Aug 19.
6
CD146, from a melanoma cell adhesion molecule to a signaling receptor.
Signal Transduct Target Ther. 2020 Aug 11;5(1):148. doi: 10.1038/s41392-020-00259-8.
7
Bone morphogenic proteins in iron homeostasis.
Bone. 2020 Sep;138:115495. doi: 10.1016/j.bone.2020.115495. Epub 2020 Jun 23.
9
Iron metabolism and iron disorders revisited in the hepcidin era.
Haematologica. 2020 Jan 31;105(2):260-272. doi: 10.3324/haematol.2019.232124. Print 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验