Suppr超能文献

Δ-四氢大麻酚酸对重组人 T 型钙通道的调制作用。

Modulation of Recombinant Human T-Type Calcium Channels by Δ-Tetrahydrocannabinolic Acid .

机构信息

Department of Biomedical Sciences, Macquarie University, Sydney, Australia.

出版信息

Cannabis Cannabinoid Res. 2022 Feb;7(1):34-45. doi: 10.1089/can.2020.0134. Epub 2021 Jan 21.

Abstract

Low voltage-activated T-type calcium channels (T-type ), Ca3.1, Ca3.2, and Ca3.3, are opened by small depolarizations from the resting membrane potential in many cells and have been associated with neurological disorders, including absence epilepsy and pain. Δ-tetrahydrocannabinol (THC) is the principal psychoactive compound in and also directly modulates T-type ; however, there is no information about functional activity of most phytocannabinoids on T-type calcium channels, including Δ-tetrahydrocannabinolic acid (THCA), the natural nonpsychoactive precursor of THC. The aim of this work was to characterize THCA effects on T-type calcium channels. We used HEK293 Flp-In-TREx cells stably expressing Ca3.1, 3.2, or 3.3. Whole-cell patch clamp recordings were made to investigate cannabinoid modulation of . THCA and THC inhibited the peak current amplitude Ca3.1 with ECs of 6.0±0.7 and 5.6±0.4, respectively. THC (1 μM) or THC produced a significant negative shift in half activation and inactivation of Ca3.1, and both drugs prolonged Ca3.1 deactivation kinetics. THCA (10 μM) inhibited Ca3.2 by 53%±4%, and both THCA and THC produced a substantial negative shift in the voltage for half inactivation and modest negative shift in half activation of Ca3.2. THC prolonged the deactivation time of Ca3.2, while THCA did not. THCA inhibited the peak current of Ca3.3 by 43%±2% (10 μM) but did not notably affect Ca3.3 channel activation or inactivation; however, THC caused significant hyperpolarizing shift in Ca3.3 steady-state inactivation. THCA modulated T-type currents , with significant modulation of kinetics and voltage dependence at low μM concentrations. This study suggests that THCA may have potential for therapeutic use in pain and epilepsy through T-type calcium channel modulation without the unwanted psychoactive effects associated with THC.

摘要

低电压激活 T 型钙通道(T 型),Ca3.1、Ca3.2 和 Ca3.3,在许多细胞中,通过从静息膜电位的小去极化而被打开,并且与包括失神性癫痫和疼痛在内的神经紊乱有关。Δ-四氢大麻酚(THC)是 的主要精神活性化合物,并且还直接调节 T 型;然而,对于 T 型钙通道的大多数植物大麻素的功能活性,包括Δ-四氢大麻酸(THCA),没有信息,THCA 是 THC 的天然非精神活性前体。本工作的目的是表征 THCA 对 T 型钙通道的作用。我们使用稳定表达 Ca3.1、3.2 或 3.3 的 HEK293 Flp-In-TREx 细胞进行全细胞贴片钳记录,以研究大麻素对 的调制。THCA 和 THC 抑制了 Ca3.1 的峰值电流幅度,EC50 分别为 6.0±0.7 和 5.6±0.4。THC(1 μM)或 THC 导致 Ca3.1 的半数激活和失活的显著负移,并且两种药物均延长了 Ca3.1 的失活动力学。THCA(10 μM)抑制 Ca3.2 达 53%±4%,THCA 和 THC 均导致 Ca3.2 的半数失活和半数激活的显著负移,并且 THC 延长了 Ca3.2 的失活时间,而 THCA 没有。THCA 抑制 Ca3.3 的峰值电流 43%±2%(10 μM),但对 Ca3.3 通道的激活或失活没有显著影响;然而,THC 导致 Ca3.3 稳态失活的显著超极化移位。THCA 调制 T 型电流,在低 μM 浓度下,动力学和电压依赖性有显著调制。本研究表明,THCA 可能通过 T 型钙通道调制而在没有与 THC 相关的不良精神活性作用的情况下,在疼痛和癫痫中具有治疗用途的潜力。

相似文献

1
Modulation of Recombinant Human T-Type Calcium Channels by Δ-Tetrahydrocannabinolic Acid .
Cannabis Cannabinoid Res. 2022 Feb;7(1):34-45. doi: 10.1089/can.2020.0134. Epub 2021 Jan 21.
2
Inhibition of recombinant human T-type calcium channels by Delta9-tetrahydrocannabinol and cannabidiol.
J Biol Chem. 2008 Jun 6;283(23):16124-34. doi: 10.1074/jbc.M707104200. Epub 2008 Apr 7.
3
Inhibition of human recombinant T-type calcium channels by phytocannabinoids in vitro.
Br J Pharmacol. 2022 Aug;179(15):4031-4043. doi: 10.1111/bph.15842. Epub 2022 Apr 26.
4
Analgesia by intrathecal delta-9-tetrahydrocannabinol is dependent on Cav3.2 calcium channels.
Mol Brain. 2023 May 25;16(1):47. doi: 10.1186/s13041-023-01036-8.
7
Modulation of human T-type calcium channels by synthetic cannabinoid receptor agonists in vitro.
Neuropharmacology. 2021 Apr 1;187:108478. doi: 10.1016/j.neuropharm.2021.108478. Epub 2021 Feb 16.
8
Evaluation of the Possible Anticonvulsant Effect of Δ-Tetrahydrocannabinolic Acid in Murine Seizure Models.
Cannabis Cannabinoid Res. 2022 Feb;7(1):46-57. doi: 10.1089/can.2020.0073. Epub 2020 Sep 9.

引用本文的文献

3
The anticonvulsant phytocannabinoids CBGVA and CBDVA inhibit recombinant T-type channels.
Front Pharmacol. 2022 Nov 1;13:1048259. doi: 10.3389/fphar.2022.1048259. eCollection 2022.

本文引用的文献

1
Receptors and Channels Possibly Mediating the Effects of Phytocannabinoids on Seizures and Epilepsy.
Pharmaceuticals (Basel). 2020 Jul 30;13(8):174. doi: 10.3390/ph13080174.
2
Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol.
Front Endocrinol (Lausanne). 2020 Mar 4;11:114. doi: 10.3389/fendo.2020.00114. eCollection 2020.
3
Pharmacokinetics of Phytocannabinoid Acids and Anticonvulsant Effect of Cannabidiolic Acid in a Mouse Model of Dravet Syndrome.
J Nat Prod. 2019 Nov 22;82(11):3047-3055. doi: 10.1021/acs.jnatprod.9b00600. Epub 2019 Nov 5.
4
Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings.
Prog Mol Biol Transl Sci. 2019;167:25-75. doi: 10.1016/bs.pmbts.2019.06.005. Epub 2019 Aug 28.
5
Absence of Entourage: Terpenoids Commonly Found in Do Not Modulate the Functional Activity of Δ-THC at Human CB and CB Receptors.
Cannabis Cannabinoid Res. 2019 Sep 23;4(3):165-176. doi: 10.1089/can.2019.0016. eCollection 2019.
6
In vitro determination of the efficacy of illicit synthetic cannabinoids at CB receptors.
Br J Pharmacol. 2019 Dec;176(24):4653-4665. doi: 10.1111/bph.14829. Epub 2019 Dec 10.
7
Inhibition of Ca 3.2 calcium channels: A new target for colonic hypersensitivity associated with low-grade inflammation.
Br J Pharmacol. 2019 Apr;176(7):950-963. doi: 10.1111/bph.14608. Epub 2019 Mar 11.
8
Cannabinoid Ligands Targeting TRP Channels.
Front Mol Neurosci. 2019 Jan 15;11:487. doi: 10.3389/fnmol.2018.00487. eCollection 2018.
9
Inhibitory effects of cannabidiol on voltage-dependent sodium currents.
J Biol Chem. 2018 Oct 26;293(43):16546-16558. doi: 10.1074/jbc.RA118.004929. Epub 2018 Sep 14.
10
Cannabinoids in cancer treatment: Therapeutic potential and legislation.
Bosn J Basic Med Sci. 2019 Feb 12;19(1):14-23. doi: 10.17305/bjbms.2018.3532.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验