Suppr超能文献

基于 DNA 甲基化的三阴性乳腺癌患者预后标志物的鉴定。

Identification of a DNA Methylation-Based Prognostic Signature for Patients with Triple-Negative Breast Cancer.

机构信息

Department of Breast Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland).

Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital, Beijing, China (mainland).

出版信息

Med Sci Monit. 2021 May 18;27:e930025. doi: 10.12659/MSM.930025.

Abstract

BACKGROUND Aberrant DNA methylation is an important biological regulatory mechanism in malignant tumors. However, it remains underutilized for establishing prognostic models for triple-negative breast cancer (TNBC). MATERIAL AND METHODS Methylation data and expression data downloaded from The Cancer Genome Atlas (TCGA) were used to identify differentially methylated sites (DMSs). The prognosis-related DMSs were selected by univariate Cox regression analysis. Functional enrichment was analyzed using DAVID. A protein-protein interaction (PPI) network was constructed using STRING. Finally, a methylation-based prognostic signature was constructed using LASSO method and further validated in 2 validation cohorts. RESULTS Firstly, we identified 743 DMSs corresponding to 332 genes, including 357 hypermethylated sites and 386 hypomethylated sites. Furthermore, we selected 103 prognosis-related DMSs by univariate Cox regression. Using a LASSO algorithm, we established a 5-DMSs prognostic signature in TCGA-TNBC cohort, which could classify TNBC patients with significant survival difference (log-rank p=4.97E-03). Patients in the high-risk group had shorter overall survival than patients in the low-risk group. The excellent performance was validated in GSE78754 (HR=2.42, 95%CI: 1.27-4.59, log-rank P=0.0055). Moreover, for disease-free survival, the prognostic performance was verified in GSE141441 (HR=2.09, 95%CI: 1.28-3.44, log-rank P=0.0027). Multivariate Cox regression analysis indicated that the 5-DMSs signature could serve as an independent risk factor. CONCLUSIONS We constructed a 5-DMSs signature with excellent performance for the prediction of disease-free survival and overall survival, providing a guide for clinicians in directing personalized therapeutic regimen selection of TNBC patients.

摘要

背景

异常的 DNA 甲基化是恶性肿瘤中重要的生物学调控机制。然而,它在建立三阴性乳腺癌(TNBC)的预后模型方面尚未得到充分利用。

材料和方法

从癌症基因组图谱(TCGA)下载甲基化数据和表达数据,以识别差异甲基化位点(DMSs)。通过单变量 Cox 回归分析选择与预后相关的 DMSs。使用 DAVID 进行功能富集分析。使用 STRING 构建蛋白质-蛋白质相互作用(PPI)网络。最后,使用 LASSO 方法构建基于甲基化的预后签名,并在 2 个验证队列中进一步验证。

结果

首先,我们确定了 743 个对应于 332 个基因的 DMSs,包括 357 个高甲基化位点和 386 个低甲基化位点。此外,我们通过单变量 Cox 回归选择了 103 个与预后相关的 DMSs。使用 LASSO 算法,我们在 TCGA-TNBC 队列中建立了一个 5-DMSs 的预后签名,可以将 TNBC 患者分为具有显著生存差异的两组(对数秩检验 p=4.97E-03)。高风险组的患者总生存时间短于低风险组的患者。该模型在 GSE78754 中得到了很好的验证(HR=2.42,95%CI:1.27-4.59,对数秩检验 P=0.0055)。此外,对于无病生存,该预后模型在 GSE141441 中得到了验证(HR=2.09,95%CI:1.28-3.44,对数秩检验 P=0.0027)。多变量 Cox 回归分析表明,5-DMSs 签名可以作为独立的危险因素。

结论

我们构建了一个具有出色性能的 5-DMSs 签名,可用于预测无病生存和总生存,为 TNBC 患者的个体化治疗方案选择提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/160a/8140526/49d7db8284bd/medscimonit-27-e930025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验