Bharath G, Banat Fawzi
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24643-24653. doi: 10.1021/acsami.1c02231. Epub 2021 May 19.
Electrochemical hydrogenation is a challenging technoeconomic process for sustainable liquid fuel production from biomass-derived compounds. In general, half-cell hydrogenation is paired with water oxidation to generate the low economic value of O at the anode. Herein, a new strategy for the rational design of Ru/reduced graphene oxide (Ru/RGO) nanocomposites through a cost-effective and straightforward microwave irradiation technique is reported for the first time. The Ru nanoparticles with an average size of 3.5 nm are well anchored into the RGO frameworks with attractive nanostructures to enhance the furfural's paired electrohydrogenation (ECH) and electrooxidation (ECO) process to achieve high-grade biofuel. Furfural is used as a reactant with the paired electrolyzer to produce furfuryl alcohol and 2-methylfuran at the cathode side. Simultaneously, 2-furic acid and 5-hydroxyfuroic acid along with plenty of H and e are generated at the anode side. Most impressively, the paired electrolyzer induces an extraordinary ECH and ECO of furfural, with the desired production of 2-methylfuran (yield = 91% and faradic efficiency (FE) of 95%) at = 97%, outperforming the ECH half-cell reaction. The mechanisms of the half-cell reaction and paired cell reaction are discussed. Exquisite control of the reaction parameters, optimized strategies, and the yield of individual products are demonstrated. These results show that the Ru/RuO nanocomposite is a potential candidate for biofuel production in industrial sectors.
电化学加氢是一种具有挑战性的技术经济过程,用于从生物质衍生化合物生产可持续液体燃料。一般来说,半电池加氢与水氧化配对,在阳极产生经济价值较低的氧气。在此,首次报道了一种通过经济高效且直接的微波辐照技术合理设计钌/还原氧化石墨烯(Ru/RGO)纳米复合材料的新策略。平均尺寸为3.5纳米的钌纳米颗粒很好地锚定在具有吸引人的纳米结构的RGO框架中,以增强糠醛的成对电加氢(ECH)和电氧化(ECO)过程,从而实现高品位生物燃料的生产。糠醛用作反应物与成对电解槽在阴极侧生产糠醇和2-甲基呋喃。同时,在阳极侧产生2-糠酸和5-羟基糠酸以及大量的H和e。最令人印象深刻的是,成对电解槽引发了糠醛非凡的ECH和ECO,在电流密度为97%时,2-甲基呋喃的期望产量(产率 = 91%,法拉第效率(FE)为95%),优于ECH半电池反应。讨论了半电池反应和成对电池反应的机制。展示了对反应参数的精确控制、优化策略以及单个产物的产率。这些结果表明,Ru/RuO纳米复合材料是工业部门生物燃料生产的潜在候选材料。