Suppr超能文献

Fc 增强型 CD40 抗体激动剂靶向树突状细胞可在膀胱癌人源化小鼠模型中诱导持久的抗肿瘤免疫。

Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer.

机构信息

Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Sci Transl Med. 2021 May 19;13(594). doi: 10.1126/scitranslmed.abd1346.

Abstract

Intravesical immunotherapy using Bacille Calmette-Guérin (BCG) attenuated bacteria delivered transurethrally to the bladder has been the standard of care for patients with high-risk non-muscle-invasive bladder cancer (NMIBC) for several decades. BCG therapy continues to be limited by high rates of disease recurrence and progression, and patients with BCG-unresponsive disease have few effective salvage therapy options besides radical cystectomy, highlighting a need for new therapies. We report that the immune-stimulatory receptor CD40 is highly expressed on dendritic cells (DCs) within the bladder tumor microenvironment of orthotopic bladder cancer mouse models, recapitulating CD40 expression by DCs found in human disease. We demonstrate that local CD40 agonism in mice with orthotopic bladder cancer through intravesical delivery of anti-CD40 agonist antibodies drives potent antitumor immunity and induces pharmacodynamic effects in the bladder tumor microenvironment, including a reduction in CD8 T cells with an exhausted phenotype. We further show that type 1 conventional DCs (cDC1) and CD8 T cells are required for both bladder cancer immune surveillance and anti-CD40 agonist antibody responses. Using orthotopic murine models humanized for CD40 and Fcγ receptors, we demonstrate that intravesical treatment with a fully human, Fc-enhanced anti-CD40 agonist antibody (2141-V11) induces robust antitumor activity in both treatment-naïve and treatment-refractory settings, driving long-term systemic antitumor immunity with no evidence of systemic toxicity. These findings support targeting CD40-expressing DCs in the bladder cancer microenvironment through an intravesical agonistic antibody approach for the treatment of NMIBC.

摘要

经尿道膀胱内给予减毒卡介苗(BCG)进行免疫治疗已在过去几十年中成为高危非肌肉浸润性膀胱癌(NMIBC)患者的标准治疗方法。BCG 治疗仍然受到疾病复发和进展率高的限制,并且对 BCG 无反应的疾病患者除根治性膀胱切除术外几乎没有有效的挽救治疗选择,这突显了对新疗法的需求。我们报告称,免疫刺激受体 CD40 在原位膀胱癌小鼠模型的膀胱肿瘤微环境中的树突状细胞(DC)上高度表达,重现了在人类疾病中发现的 DC 上的 CD40 表达。我们证明,通过向患有原位膀胱癌的小鼠经膀胱内给予抗 CD40 激动剂抗体,在膀胱肿瘤微环境中局部激动 CD40,可驱动强大的抗肿瘤免疫,并诱导药效学效应,包括减少具有耗竭表型的 CD8 T 细胞。我们进一步表明,1 型传统树突状细胞(cDC1)和 CD8 T 细胞是膀胱癌免疫监视和抗 CD40 激动剂抗体反应所必需的。使用人源化 CD40 和 Fcγ 受体的原位小鼠模型,我们证明,经膀胱内给予完全人源化、Fc 增强的抗 CD40 激动剂抗体(2141-V11)可在治疗初治和治疗抵抗的情况下在两种情况下均诱导出强大的抗肿瘤活性,从而引起长期的全身性抗肿瘤免疫,而没有全身毒性的证据。这些发现支持通过膀胱内激动性抗体方法靶向膀胱肿瘤微环境中表达 CD40 的 DC 来治疗 NMIBC。

相似文献

3
IL-15 synergizes with CD40 agonist antibodies to induce durable immunity against bladder cancer.
Proc Natl Acad Sci U S A. 2023 Aug 29;120(35):e2306782120. doi: 10.1073/pnas.2306782120. Epub 2023 Aug 22.
6
IL-15 synergizes with CD40 agonist antibodies to induce durable immunity against bladder cancer.
bioRxiv. 2023 Feb 1:2023.01.30.526266. doi: 10.1101/2023.01.30.526266.
7
The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T-cell-dependent tumor immunity.
Clin Cancer Res. 2015 Mar 1;21(5):1115-26. doi: 10.1158/1078-0432.CCR-14-0913. Epub 2014 Oct 14.
8
Intravesical oncolytic virotherapy and immunotherapy for non-muscle-invasive bladder cancer mouse model.
BJU Int. 2023 Sep;132(3):298-306. doi: 10.1111/bju.16012. Epub 2023 Apr 4.
9
Immunotherapy in Bacillus Calmette-Guerin (BCG) unresponsive nonmuscle invasive bladder cancer.
Curr Opin Urol. 2021 Mar 1;31(2):160-169. doi: 10.1097/MOU.0000000000000846.

引用本文的文献

2
Cytokine Therapy in Bladder Cancer: Mechanisms, Efficacy, and Future Prospects.
Curr Issues Mol Biol. 2025 Apr 15;47(4):278. doi: 10.3390/cimb47040278.
3
Impact of antibody Fc engineering on translational pharmacology, and safety: insights from industry case studies.
MAbs. 2025 Dec;17(1):2505092. doi: 10.1080/19420862.2025.2505092. Epub 2025 Jul 7.
4
Antigenic peptide delivery to antigen-presenting cells using a CD40-coiled coil affinity-based platform.
Drug Deliv. 2025 Dec;32(1):2486340. doi: 10.1080/10717544.2025.2486340. Epub 2025 May 26.
5
Emerging therapeutics targeting tumor-associated macrophages for the treatment of solid organ cancers.
Expert Opin Emerg Drugs. 2025 Jun;30(2):109-147. doi: 10.1080/14728214.2025.2504376. Epub 2025 May 25.
6
Unleashing the therapeutic potential of tumor-draining lymph nodes: spotlight on bladder cancer.
J Transl Med. 2025 Apr 29;23(1):489. doi: 10.1186/s12967-024-05864-7.
7
Linking Effector Function to Antitumor Monoclonal Antibody Efficacy.
J Immunol. 2024 Nov;213(10):1405-1406. doi: 10.4049/jimmunol.2400582. Epub 2024 Nov 15.
8
Plasma membrane-coated nanoparticles and membrane vesicles to orchestrate multimodal antitumor immunity.
J Immunother Cancer. 2025 Jan 26;13(1):e010005. doi: 10.1136/jitc-2024-010005.
9
Tumor-associated macrophages in bladder cancer: roles and targeted therapeutic strategies.
Front Immunol. 2024 Nov 13;15:1418131. doi: 10.3389/fimmu.2024.1418131. eCollection 2024.

本文引用的文献

1
The PD-1/PD-L1-Checkpoint Restrains T cell Immunity in Tumor-Draining Lymph Nodes.
Cancer Cell. 2020 Nov 9;38(5):685-700.e8. doi: 10.1016/j.ccell.2020.09.001. Epub 2020 Oct 1.
2
BATF3 programs CD8 T cell memory.
Nat Immunol. 2020 Nov;21(11):1397-1407. doi: 10.1038/s41590-020-0786-2. Epub 2020 Sep 28.
3
cDC1 prime and are licensed by CD4 T cells to induce anti-tumour immunity.
Nature. 2020 Aug;584(7822):624-629. doi: 10.1038/s41586-020-2611-3. Epub 2020 Aug 12.
4
Bacterial immunotherapy for cancer induces CD4-dependent tumor-specific immunity through tumor-intrinsic interferon-γ signaling.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18627-18637. doi: 10.1073/pnas.2004421117. Epub 2020 Jul 17.
5
Dendritic Cells, the T-cell-inflamed Tumor Microenvironment, and Immunotherapy Treatment Response.
Clin Cancer Res. 2020 Aug 1;26(15):3901-3907. doi: 10.1158/1078-0432.CCR-19-1321. Epub 2020 Apr 24.
6
A conserved dendritic-cell regulatory program limits antitumour immunity.
Nature. 2020 Apr;580(7802):257-262. doi: 10.1038/s41586-020-2134-y. Epub 2020 Mar 25.
7
Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8022-8031. doi: 10.1073/pnas.1918971117. Epub 2020 Mar 25.
8
Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy.
Sci Transl Med. 2020 Mar 11;12(534). doi: 10.1126/scitranslmed.aav7431.
9
CD40 Agonist Antibodies in Cancer Immunotherapy.
Annu Rev Med. 2020 Jan 27;71:47-58. doi: 10.1146/annurev-med-062518-045435. Epub 2019 Aug 14.
10
In situ vaccination with defined factors overcomes T cell exhaustion in distant tumors.
J Clin Invest. 2019 Jul 22;129(8):3435-3447. doi: 10.1172/JCI128562.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验