Univ Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis, F-69622 Villeurbanne, France.
Université Grenoble Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, F-38026 Grenoble, France.
Phys Med Biol. 2021 Jun 14;66(12). doi: 10.1088/1361-6560/ac03cb.
Online ion range monitoring in hadron therapy can be performed via detection of secondary radiation, such as prompt-rays, emitted during treatment. The promptemission profile is correlated with the ion depth-dose profile and can be reconstructed via Compton imaging. The line-cone reconstruction, using the intersection between the primary beam trajectory and the cone reconstructed via a Compton camera, requires negligible computation time compared to iterative algorithms. A recent report hypothesised that time of flight (TOF) based discrimination could improve the precision of thefall-off position (FOP) measured via line-cone reconstruction, where TOF comprises both the proton transit time from the phantom entrance untilemission, and the flight time of the-ray to the detector. The aim of this study was to implement such a method and investigate the influence of temporal resolution on the precision of the FOP. Monte Carlo simulations of a 160 MeV proton beam incident on a homogeneous PMMA phantom were performed using GATE. The Compton camera consisted of a silicon-based scatterer and CeBrscintillator absorber. The temporal resolution of the detection system (absorber + beam trigger) was varied between 0.1 and 1.3 ns rms and a TOF-based discrimination method applied to eliminate unlikely solution(s) from the line-cone reconstruction. The FOP was obtained for varying temporal resolutions and its precision obtained from its shift across 100 independentemission profiles compared to a high statistics reference profile. The optimal temporal resolution for the given camera geometry and 10primary protons was 0.2 ns where a precision of 2.30 ± 0.15 mm (1) on the FOP was found. This precision is comparable to current state-of-the-art Compton imaging using iterative reconstruction methods or 1D imaging with mechanically collimated devices, and satisfies the requirement of being smaller than the clinical safety margins.
在线离子射程监测在粒子治疗中可以通过检测在治疗过程中发射的次级辐射,如瞬发射线来实现。瞬发射线轮廓与离子深度剂量轮廓相关联,并可以通过康普顿成象重建。与迭代算法相比,使用通过康普顿相机重建的圆锥体与初级射束轨迹的交点的线-圆锥体重建所需的计算时间可以忽略不计。最近的一份报告假设,基于飞行时间(TOF)的甄别可以提高通过线-圆锥体重建测量的下降位置(FOP)的精度,其中 TOF 包括质子从体模入口到发射的传输时间,以及射线到探测器的飞行时间。本研究的目的是实现这种方法,并研究时间分辨率对 FOP 精度的影响。使用 GATE 对 160 MeV 质子束入射到均匀 PMMA 体模进行了蒙特卡罗模拟。康普顿相机由硅基散射体和 CeBr 闪烁体组成。探测系统(吸收体+射束触发)的时间分辨率在 0.1 和 1.3 ns rms 之间变化,并应用基于 TOF 的甄别方法来从线-圆锥体重建中消除不太可能的解。针对不同的时间分辨率获得了 FOP,并通过与高统计参考轮廓的 100 个独立发射轮廓的比较,获得了其在 10 个初级质子中的位置精度。对于给定的相机几何形状和 10 个初级质子,最佳时间分辨率为 0.2 ns,FOP 的精度为 2.30±0.15mm(1)。与使用迭代重建方法或机械准直设备的一维成像的当前最先进的康普顿成像相比,该精度相当,并且满足小于临床安全裕度的要求。