Suppr超能文献

基于微流体的处理器和电路设计。

Microfluidic-based processors and circuits design.

作者信息

Azizbeigi Kasra, Zamani Pedram Maysam, Sanati-Nezhad Amir

机构信息

Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran.

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada.

出版信息

Sci Rep. 2021 May 26;11(1):10985. doi: 10.1038/s41598-021-90485-z.

Abstract

Droplets produced within microfluidics have not only attracted the attention of researchers to develop complex biological, industrial and clinical testing systems but also played a role as a bit of data. The flow of droplets within a network of microfluidic channels by stimulation of their movements, trajectories, and interaction timing, can provide an opportunity for preparation of complex and logical microfluidic circuits. Such mechanical-based circuits open up avenues to mimic the logic of electrical circuits within microfluidics. Recently, simple microfluidic-based logical elements such as AND, OR, and NOT gates have been experimentally developed and tested to model basic logic conditions in laboratory settings. In this work, we develop new microfluidic networks, control the shape of channels and speed of droplet movement, and regulate the size of bubbles in order to extend the logical elements to six new logic gates, including AND/OR type 1, AND/OR type 2, NOT type 1, NOT type 2, Flip-Flop, Synchronizer, and a parametric model of T-junction as a bubble generator. We further designed and simulated a novel microfluidic Decoder 1 to 2, a Decoder 2 to 4, and a microfluidic circuit that combines several individual logic gates into one complex circuit. Further fabrication and experimental testing of these newly introduced logic gates within microfluidics enable implementing complex circuits in high-throughput microfluidic platforms for tissue engineering, drug testing and development, and chemical synthesis and process design.

摘要

微流控技术中产生的液滴不仅吸引了研究人员开发复杂的生物、工业和临床测试系统,还作为一种数据发挥了作用。通过刺激液滴在微流控通道网络中的运动、轨迹和相互作用时间,液滴的流动可以为制备复杂且符合逻辑的微流控电路提供机会。这种基于机械的电路为在微流控技术中模拟电路逻辑开辟了道路。最近,诸如与门、或门和非门等简单的基于微流控的逻辑元件已在实验室环境中通过实验开发和测试,以模拟基本逻辑条件。在这项工作中,我们开发了新的微流控网络,控制通道形状和液滴移动速度,并调节气泡大小,以便将逻辑元件扩展到六个新的逻辑门,包括与/或1型、与/或2型、非1型、非2型、触发器、同步器,以及作为气泡发生器的T型交叉点的参数模型。我们进一步设计并模拟了一种新型的微流控1到2解码器、2到4解码器,以及一个将多个单独逻辑门组合成一个复杂电路的微流控电路。在微流控技术中对这些新引入的逻辑门进行进一步制造和实验测试,能够在高通量微流控平台上实现用于组织工程、药物测试与开发以及化学合成与工艺设计的复杂电路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0b1/8155008/8e8d361f93c8/41598_2021_90485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验