Suppr超能文献

建立预测急性细菌性脑膜炎患者死亡率的预后模型。

Developing a Prognostic Model to Predict Mortality in Patients with Acute Bacterial Meningitis.

机构信息

Biomedical Engineering faculty, Amirkabir University of Technology, Iran.

Departement of Computer Science, Sama Technical and Vocational Training College, Tehran Branch, Islamic Azad University, Iran.

出版信息

Stud Health Technol Inform. 2021 May 27;281:774-778. doi: 10.3233/SHTI210280.

Abstract

Bacterial meningitis is one of the harmful and deadly infectious diseases, and any delay in its treatment will lead to death. In this paper, a prognostic model was developed to predict the risk of death amongst probable cases of bacterial meningitis. Our prognostic model was developed using a decision tree algorithm on the national meningitis registry of the Iranian Center for Disease and Prevention (ICDCP) containing 3,923 records of meningitis suspected cases in 2018-2019. The most important features have been selected for the model construction. This model can predict the mortality risk for the meningitis probable cases with 78% accuracy, 84% sensitivity, and 73% specificity. The identified variables in prognosis the death included age and CSF protein level. CSF protein level (mg/dl) <= 65 versus > 65 provided the first branch of our decision tree. The highest mortality risk (85.8%) was seen in the patients >65 CSF protein level with 30 years < of age. For the patients <=30 year of age with CSF protein level >137 (mg/dl), the mortality risk was 60%. The prognostic factors identified in the present study draw the attention of clinicians to provide early specific measures, such as the admission of patients with a higher risk of death to intensive care units (ICU). It could also provide a helpful risk score tool in decision-making in the early phases of admission in pandemics, decrease mortality rate and improve public health operations efficiently in infectious diseases.

摘要

细菌性脑膜炎是一种危害性和致命性的传染病,如果治疗不及时,将导致死亡。本文建立了一个预测细菌性脑膜炎疑似病例死亡风险的预后模型。该模型基于 2018-2019 年伊朗疾病预防控制中心国家脑膜炎登记处的 3923 例疑似脑膜炎病例数据,使用决策树算法开发。该模型选择了最重要的特征用于构建,对脑膜炎疑似病例死亡风险的预测准确率为 78%,敏感度为 84%,特异度为 73%。确定的预后死亡相关变量包括年龄和脑脊液蛋白水平。脑脊液蛋白水平(mg/dl)<= 65 与>65 作为决策树的第一个分支。年龄 30 岁以下、CSF 蛋白水平>65 的患者死亡风险最高(85.8%)。对于年龄 <=30 岁、CSF 蛋白水平>137(mg/dl)的患者,死亡率为 60%。本研究确定的预后因素引起了临床医生的注意,以便及时采取特定措施,如将死亡风险较高的患者收入重症监护病房(ICU)。在大流行早期入院阶段,该模型还可以提供有帮助的风险评分工具,以辅助决策,从而降低死亡率,提高传染病防控的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验