Herrera-Carbajal Alejandro, Rodríguez-Lugo Ventura, Hernández-Ávila Juan, Sánchez-Castillo Ariadna
Area Academica de Ciencias de la Tierra y Materiales, Universidad Autonoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, Mineral de la Reforma, Hidalgo C.P. 42184, Mexico.
Escuela Superior de Apan, Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan km 8, Apan, Hidalgo C.P 43920, Mexico.
Phys Chem Chem Phys. 2021 Jun 16;23(23):13075-13086. doi: 10.1039/d1cp00519g.
In this work we have studied infinite size silicon-germanium alloy nanotubes of several types, armchair, zigzag and chiral, by theoretical analysis based on density functional theory as implemented in the SIESTA code, which utilizes a linear combination of atomic orbitals and a generalized gradient approximation proposed by Perdew, Burke and Ernzerhof (GGA-PBE) for the exchange and correlation energy. The structures were relaxed until the atomic forces were less than 0.0001 eV Å-1. The electronic band structure, density of states and cohesive energy were then computed; the optical calculation was run in between 0 and 6 eV, with a broadening of 0.05 eV. The obtained results exhibit the deformation of the structure on the surface, which seems to be related to its stability. The armchair and zigzag tubes are direct band gap semiconductor materials, while chiral nanotubes shift from indirect to direct bandgap semiconductors, depending on their diameter size. Likewise, the bandgap depends on the diameter of the SiGe nanotubes (SiGeNTs). We have associated the absorption curves and the density of states through Van Hove singularities. In summary, our results on the structural and electronic properties of SiGeNTs elucidate their possible applications in thermoelectrics, photovoltaics and nanoelectronics, while the possibility of associating the absorption curves with the density of states provides a method of characterization.
在这项工作中,我们通过基于密度泛函理论的理论分析,利用SIESTA代码研究了几种类型的无限尺寸硅锗合金纳米管,包括扶手椅型、锯齿型和手性型。该代码采用原子轨道的线性组合以及由佩德韦、伯克和恩泽霍夫提出的广义梯度近似(GGA-PBE)来计算交换关联能。结构弛豫直至原子力小于0.0001 eV Å-1。然后计算电子能带结构、态密度和内聚能;光学计算在0至6 eV之间进行,展宽为0.05 eV。所得结果显示了表面结构的变形,这似乎与其稳定性有关。扶手椅型和锯齿型纳米管是直接带隙半导体材料,而手性纳米管根据其直径大小从间接带隙半导体转变为直接带隙半导体。同样,带隙取决于硅锗纳米管(SiGeNTs)的直径。我们通过范霍夫奇点关联了吸收曲线和态密度。总之,我们关于SiGeNTs结构和电子性质的结果阐明了它们在热电、光伏和纳米电子学中的可能应用,而将吸收曲线与态密度关联的可能性提供了一种表征方法。