York Peter A, Peña Rut, Kent Daniel, Wood Robert J
John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave., Boston, MA, USA.
Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, MA, USA.
Sci Robot. 2021 Jan 13;6(50). doi: 10.1126/scirobotics.abd5476.
The creation of multiarticulated mechanisms for use with minimally invasive surgical tools is difficult because of fabrication, assembly, and actuation challenges on the millimeter scale of these devices. Nevertheless, such mechanisms are desirable for granting surgeons greater precision and dexterity to manipulate and visualize tissue at the surgical site. Here, we describe the construction of a complex optoelectromechanical device that can be integrated with existing surgical tools to control the position of a fiber-delivered laser. By using modular assembly and a laminate fabrication method, we are able to create a smaller and higher-bandwidth device than the current state of the art while achieving a range of motion similar to existing tools. The device we present is 6 millimeters in diameter and 16 millimeters in length and is capable of focusing and steering a fiber-delivered laser beam at high speed (1.2-kilohertz bandwidth) over a large range (over ±10 degrees in both of two axes) with excellent static repeatability (200 micrometers).
由于这些设备在毫米尺度上存在制造、组装和驱动方面的挑战,因此制造用于微创外科手术工具的多关节机构很困难。然而,这种机构对于赋予外科医生更高的精度和灵活性以在手术部位操作和可视化组织是很有必要的。在此,我们描述了一种复杂的光机电设备的构建,该设备可与现有的外科手术工具集成,以控制光纤传输激光的位置。通过使用模块化组装和层压制造方法,我们能够制造出比现有技术更小、带宽更高的设备,同时实现与现有工具相似的运动范围。我们展示的设备直径为6毫米,长度为16毫米,能够在大范围内(两个轴上均超过±10度)以高速(1.2千赫兹带宽)聚焦和转向光纤传输的激光束,并且具有出色的静态重复性(200微米)。