Zhao Y X, Chen Cong, Sheng Xian-Lei, Yang Shengyuan A
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Phys Rev Lett. 2021 May 14;126(19):196402. doi: 10.1103/PhysRevLett.126.196402.
A fundamental dichotomous classification for all physical systems is according to whether they are spinless or spinful. This is especially crucial for the study of symmetry-protected topological phases, as the two classes have distinct symmetry algebra. As a prominent example, the spacetime inversion symmetry PT satisfies (PT)^{2}=±1 for spinless/spinful systems, and each class features unique topological phases. Here, we reveal a possibility to switch the two fundamental classes via Z_{2} projective representations. For PT symmetry, this occurs when P inverses the gauge transformation needed to recover the original Z_{2} gauge connections under P. As a result, we can achieve topological phases originally unique for spinful systems in a spinless system, and vice versa. We explicitly demonstrate the claimed mechanism with several concrete models, such as Kramers degenerate bands and Kramers Majorana boundary modes in spinless systems, and real topological phases in spinful systems. Possible experimental realization of these models is discussed. Our work breaks a fundamental limitation on topological phases and opens an unprecedented possibility to realize intriguing topological phases in previously impossible systems.
对于所有物理系统,一个基本的二分法分类是根据它们有无自旋。这对于对称性保护拓扑相的研究尤为关键,因为这两类系统具有不同的对称代数。作为一个突出的例子,时空反演对称性PT对于无自旋/有自旋系统满足(PT)² = ±1,并且每一类都有独特的拓扑相。在此,我们揭示了一种通过Z₂投射表示来切换这两个基本类别的可能性。对于PT对称性,当P反转在P作用下恢复原始Z₂规范联络所需的规范变换时,就会发生这种情况。结果,我们可以在无自旋系统中实现原本对于有自旋系统独特的拓扑相,反之亦然。我们用几个具体模型明确展示了所宣称的机制,比如无自旋系统中的克莱默斯简并能带和克莱默斯马约拉纳边界模式,以及有自旋系统中的真实拓扑相。讨论了这些模型可能的实验实现。我们的工作打破了对拓扑相的一个基本限制,并开启了在以前不可能的系统中实现有趣拓扑相的前所未有的可能性。