National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza 12618, Egypt.
National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Sci Total Environ. 2021 Oct 1;789:147808. doi: 10.1016/j.scitotenv.2021.147808. Epub 2021 May 17.
This paper reports for the first time the occurrence, fates, and carcinogenic risks of 20 substituted polycyclic aromatic hydrocarbons (SPAHs) and 16 priority PAH species in two coking wastewater treatment plants (WWTPs) (plant E and central WWTP). The measured total concentrations of PAHs and SPAHs in raw wastewater of coking plant E were 3700 and 1200 μg·L, respectively, with naphthalene (1400 μg·L), and fluoranthene (353 μg·L) as dominant PAH species and 2-methylnaphthalene (167 μg·L), anthraquinone (133 μg·L), and 1-methylnaphthalene (132 μg·L) as dominant SPAHs. For the 11 methyl-PAHs (MPAHs), 4 oxygenated-PAHs (OPAHs), and 5 nitrated-PAHs (NPAHs) investigated, the biological wastewater treatment process removed 98.6% MPAHs, 83.9% OPAHs, and 89.1% NPAHs. Mass balance analysis result revealed that transformation was the major mechanism to remove low-molecular-weight (LMW) MPAHs (59.9-77.3%), a large part of OPAHs, including anthraquinone, methylanthraquinone, and 9-fluorenone (46.7-49.6%), and some NPAHs, including 2-nitrofluorene and 9-nitroanthrancene (52.9-59.1%). Adsorption by activated sludge mainly accounted for removing high-molecular-weight (HMW) SPAHs (59.6-71.01%). The relatively high concentrations of SPAHs in excess sludge (15,000 μg·g) and treated effluent (104 μg·L) are of great concern for their potential adverse ecological impacts. SPAHS exhibited similar behaviors in central WWTP, though the influent concentrations were much lower. The concentration levels of SPAHs in the ambient air of coking plant E and central WWTP may also pose potential lung cancer risks (LCR) to the workers through inhalation, where all studied SPAHs except 3-nitrofluoranthene and 7-nitrobenz[a]anthracene exceeded the acceptable cancer risk standards (>10) recommended by U.S EPA. This study could help identify the ecological and healthy risks during coking wastewater treatment and provide useful information for policy-making.
本文首次报道了两座焦化废水处理厂(E 厂和中心 WWTP)中 20 种取代多环芳烃(SPAHs)和 16 种优先多环芳烃(PAH)的赋存、归趋和致癌风险。焦化厂 E 厂原水的 PAHs 和 SPAHs 总浓度分别为 3700μg·L 和 1200μg·L,其中萘(1400μg·L)、荧蒽(353μg·L)为主要的 PAH 物种,2-甲基萘(167μg·L)、蒽醌(133μg·L)和 1-甲基萘(132μg·L)为主要的 SPAHs。在所研究的 11 种甲基多环芳烃(MPAHs)、4 种含氧多环芳烃(OPAHs)和 5 种硝基多环芳烃(NPAHs)中,生物废水处理过程去除了 98.6%的 MPAHs、83.9%的 OPAHs 和 89.1%的 NPAHs。质量平衡分析结果表明,转化是去除低分子量(LMW)MPAHs(59.9-77.3%)、大部分蒽醌、甲基蒽醌和 9-芴酮(46.7-49.6%)以及部分 NPAHs,包括 2-硝基芴和 9-硝基蒽(52.9-59.1%)的主要机制。活性污泥的吸附主要负责去除高分子量(HMW)SPAHs(59.6-71.01%)。剩余污泥(15000μg·g)和处理后的废水(104μg·L)中 SPAHs 浓度较高,这对其潜在的生态影响令人担忧。中央 WWTP 中 SPAHs 也表现出相似的行为,尽管进水浓度要低得多。焦化厂 E 厂和中央 WWTP 环境空气中 SPAHs 的浓度水平也可能通过吸入对工人造成潜在的肺癌风险(LCR),在所研究的 SPAHs 中,除了 3-硝基芴和 7-硝基苯并[a]蒽外,所有 SPAHs 均超过了美国 EPA 推荐的可接受癌症风险标准(>10)。本研究有助于确定焦化废水处理过程中的生态和健康风险,并为决策提供有用信息。