Mechatronics Engineering, Faculty of Mechanical Engineering and Production Science (FIMCP), ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil 09-01-5863, Ecuador.
Facultad de Ingenierías, Universidad ECOTEC, Km. 13.5 Vía a Samborondón, Samborondón 092302, Ecuador.
Sensors (Basel). 2021 May 11;21(10):3333. doi: 10.3390/s21103333.
Structural health monitoring for offshore wind turbine foundations is paramount to the further development of offshore fixed wind farms. At present time there are a limited number of foundation designs, the jacket type being the preferred one in large water depths. In this work, a jacket-type foundation damage diagnosis strategy is stated. Normally, most or all the available data are of regular operation, thus methods that focus on the data leading to failures end up using only a small subset of the available data. Furthermore, when there is no historical precedent of a type of fault, those methods cannot be used. In addition, offshore wind turbines work under a wide variety of environmental conditions and regions of operation involving unknown input excitation given by the wind and waves. Taking into account the aforementioned difficulties, the stated strategy in this work is based on an autoencoder neural network model and its contribution is two-fold: (i) the proposed strategy is based only on healthy data, and (ii) it works under different operating and environmental conditions based only on the output vibration data gathered by accelerometer sensors. The proposed strategy has been tested through experimental laboratory tests on a scaled model.
海上风力涡轮机基础的结构健康监测对于近海固定风电场的进一步发展至关重要。目前,基础设计的数量有限,在较大水深中,导管架式基础是首选。在这项工作中,提出了一种导管架式基础损伤诊断策略。通常,大多数或所有可用数据都来自正常运行,因此,侧重于导致故障的数据的方法最终只使用了可用数据的一小部分。此外,当没有某种类型故障的历史先例时,这些方法就不能使用。此外,海上风力涡轮机在各种环境条件和操作区域下运行,涉及由风和波浪引起的未知输入激励。考虑到上述困难,这项工作中提出的策略基于自编码器神经网络模型,其贡献有两个方面:(i)所提出的策略仅基于健康数据,以及(ii)它仅基于由加速度计传感器收集的输出振动数据,在不同的操作和环境条件下工作。该策略已经通过对比例模型的实验室内测试进行了测试。