Suppr超能文献

心脏发育过程中微小RNA对T-Box基因表达的差异时空调控

Differential Spatio-Temporal Regulation of T-Box Gene Expression by microRNAs during Cardiac Development.

作者信息

Alzein Mohamad, Lozano-Velasco Estefanía, Hernández-Torres Francisco, García-Padilla Carlos, Domínguez Jorge N, Aránega Amelia, Franco Diego

机构信息

Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain.

出版信息

J Cardiovasc Dev Dis. 2021 May 14;8(5):56. doi: 10.3390/jcdd8050056.

Abstract

Cardiovascular development is a complex process that starts with the formation of symmetrically located precardiac mesodermal precursors soon after gastrulation and is completed with the formation of a four-chambered heart with distinct inlet and outlet connections. Multiple transcriptional inputs are required to provide adequate regional identity to the forming atrial and ventricular chambers as well as their flanking regions; i.e., inflow tract, atrioventricular canal, and outflow tract. In this context, regional chamber identity is widely governed by regional activation of distinct T-box family members. Over the last decade, novel layers of gene regulatory mechanisms have been discovered with the identification of non-coding RNAs. microRNAs represent the most well-studied subcategory among short non-coding RNAs. In this study, we sought to investigate the functional role of distinct microRNAs that are predicted to target T-box family members. Our data demonstrated a highly dynamic expression of distinct microRNAs and T-box family members during cardiogenesis, revealing a relatively large subset of complementary and similar microRNA-mRNA expression profiles. Over-expression analyses demonstrated that a given microRNA can distinctly regulate the same T-box family member in distinct cardiac regions and within distinct temporal frameworks, supporting the notion of indirect regulatory mechanisms, and dual luciferase assays on , and 3' UTR further supported this notion. Overall, our data demonstrated a highly dynamic microRNA and T-box family members expression during cardiogenesis and supported the notion that such microRNAs indirectly regulate the T-box family members in a tissue- and time-dependent manner.

摘要

心血管发育是一个复杂的过程,始于原肠胚形成后不久对称分布的心脏中胚层前体的形成,并以具有不同入口和出口连接的四腔心脏的形成为结束。需要多种转录输入来为正在形成的心房和心室腔及其侧翼区域(即流入道、房室管和流出道)提供足够的区域特征。在这种情况下,区域腔室特征广泛地由不同T-box家族成员的区域激活所控制。在过去十年中,随着非编码RNA的鉴定,发现了新的基因调控机制层。微小RNA是短非编码RNA中研究最深入的亚类。在本研究中,我们试图研究预测靶向T-box家族成员的不同微小RNA的功能作用。我们的数据表明,在心脏发生过程中,不同的微小RNA和T-box家族成员具有高度动态的表达,揭示了互补和相似的微小RNA-信使核糖核酸表达谱的相对较大子集。过表达分析表明,给定的微小RNA可以在不同的心脏区域和不同的时间框架内对同一个T-box家族成员进行不同的调节,这支持了间接调控机制的概念,并且对、和3'非翻译区的双荧光素酶测定进一步支持了这一概念。总体而言,我们的数据表明在心脏发生过程中微小RNA和T-box家族成员具有高度动态的表达,并支持了这样的观点,即这些微小RNA以组织和时间依赖性方式间接调节T-box家族成员。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a277/8156480/b03fd3925038/jcdd-08-00056-g001.jpg

相似文献

2
Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis.
Int J Mol Sci. 2022 Mar 4;23(5):2839. doi: 10.3390/ijms23052839.
3
T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis.
Development. 2005 May;132(10):2475-87. doi: 10.1242/dev.01832. Epub 2005 Apr 20.
4
Msx1 and Msx2 are functional interacting partners of T-box factors in the regulation of Connexin43.
Cardiovasc Res. 2008 Jun 1;78(3):485-93. doi: 10.1093/cvr/cvn049. Epub 2008 Feb 19.
5
Tbx20, Smads, and the atrioventricular canal.
Trends Cardiovasc Med. 2010 May;20(4):109-14. doi: 10.1016/j.tcm.2010.09.004.
6
Differential chamber-specific expression and regulation of long non-coding RNAs during cardiac development.
Biochim Biophys Acta Gene Regul Mech. 2019 Oct;1862(10):194435. doi: 10.1016/j.bbagrm.2019.194435. Epub 2019 Nov 1.
8
TBX3 and its splice variant TBX3 + exon 2a are functionally similar.
Pigment Cell Melanoma Res. 2008 Jun;21(3):379-87. doi: 10.1111/j.1755-148X.2008.00461.x. Epub 2008 Apr 26.
9
Development of the building plan of the heart.
Ann N Y Acad Sci. 2004 May;1015:171-81. doi: 10.1196/annals.1302.014.
10
Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development.
Dev Dyn. 1996 Aug;206(4):379-90. doi: 10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F.

引用本文的文献

3
miRNAs in Heart Development and Disease.
Int J Mol Sci. 2024 Jan 30;25(3):1673. doi: 10.3390/ijms25031673.
4
MicroRNAs as a Novel Player for Differentiation of Mesenchymal Stem Cells into Cardiomyocytes.
Curr Stem Cell Res Ther. 2023;18(1):27-34. doi: 10.2174/1574888X17666220422094150.
5
Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis.
Int J Mol Sci. 2022 Mar 4;23(5):2839. doi: 10.3390/ijms23052839.

本文引用的文献

1
T-box transcription factor 3 governs a transcriptional program for the function of the mouse atrioventricular conduction system.
Proc Natl Acad Sci U S A. 2020 Aug 4;117(31):18617-18626. doi: 10.1073/pnas.1919379117. Epub 2020 Jul 16.
3
MicroRNA‑3651 promotes colorectal cancer cell proliferation through directly repressing T‑box transcription factor 1.
Int J Mol Med. 2020 Mar;45(3):956-966. doi: 10.3892/ijmm.2020.4458. Epub 2020 Jan 8.
5
MiR-199a-3p inhibition facilitates cardiomyocyte differentiation of embryonic stem cell through promotion of MEF2C.
J Cell Physiol. 2019 Dec;234(12):23315-23325. doi: 10.1002/jcp.28899. Epub 2019 May 29.
6
MiR-98-5p regulates myocardial differentiation of mesenchymal stem cells by targeting TBX5.
Eur Rev Med Pharmacol Sci. 2018 Nov;22(22):7841-7848. doi: 10.26355/eurrev_201811_16409.
7
MicroRNA-451a acts as tumor suppressor in cutaneous basal cell carcinoma.
Mol Genet Genomic Med. 2018 Nov;6(6):1001-1009. doi: 10.1002/mgg3.473. Epub 2018 Sep 13.
8
Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development.
Circ Res. 2018 Aug 3;123(4):428-442. doi: 10.1161/CIRCRESAHA.118.311339.
9
Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration.
Nat Commun. 2018 Feb 16;9(1):700. doi: 10.1038/s41467-018-03019-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验