Suppr超能文献

基于主成分分析的户外激光雷达点云数据去噪算法

PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data.

作者信息

Cheng Dongyang, Zhao Dangjun, Zhang Junchao, Wei Caisheng, Tian Di

机构信息

School of Aeronautics and Astronautics, Central South University, Changsha 410083, China.

出版信息

Sensors (Basel). 2021 May 26;21(11):3703. doi: 10.3390/s21113703.

Abstract

Due to the complexity of surrounding environments, lidar point cloud data (PCD) are often degraded by plane noise. In order to eliminate noise, this paper proposes a filtering scheme based on the grid principal component analysis (PCA) technique and the ground splicing method. The 3D PCD is first projected onto a desired 2D plane, within which the ground and wall data are well separated from the PCD via a prescribed index based on the statistics of points in all 2D mesh grids. Then, a KD-tree is constructed for the ground data, and rough segmentation in an unsupervised method is conducted to obtain the true ground data by using the normal vector as a distinctive feature. To improve the performance of noise removal, we propose an elaborate K nearest neighbor (KNN)-based segmentation method via an optimization strategy. Finally, the denoised data of the wall and ground are spliced for further 3D reconstruction. The experimental results show that the proposed method is efficient at noise removal and is superior to several traditional methods in terms of both denoising performance and run speed.

摘要

由于周围环境的复杂性,激光雷达点云数据(PCD)常常会受到平面噪声的干扰而质量下降。为了消除噪声,本文提出了一种基于网格主成分分析(PCA)技术和地面拼接方法的滤波方案。首先将三维PCD投影到所需的二维平面上,在该平面内,基于所有二维网格中点的统计数据,通过规定的指标将地面和墙壁数据与PCD很好地分离。然后,为地面数据构建KD树,并采用无监督方法进行粗略分割,以法向量作为显著特征来获取真实地面数据。为了提高去噪性能,我们通过优化策略提出了一种精细的基于K近邻(KNN)的分割方法)。最后,对墙壁和地面的去噪数据进行拼接以进行进一步的三维重建。实验结果表明,该方法在去噪方面是有效的,在去噪性能和运行速度方面均优于几种传统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75b7/8198512/b14c54a343eb/sensors-21-03703-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验