文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将铂纳米颗粒固定在水解聚丙烯腈基纳米纤维纸上。

Immobilization of Pt nanoparticles on hydrolyzed polyacrylonitrile-based nanofiber paper.

作者信息

Kwon Soon Yeol, Ra EunJu, Jung Dong Geon, Kong Seong Ho

机构信息

School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.

Fineroute academy, Hwaseong, Gyunggi-do, 18505, Republic of Korea.

出版信息

Sci Rep. 2021 Jun 1;11(1):11501. doi: 10.1038/s41598-021-90536-5.


DOI:10.1038/s41598-021-90536-5
PMID:34075101
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8169836/
Abstract

The electrochemical activity of catalysts strongly depends on the uniform distribution of monodisperse Pt nanoparticles without aggregates. Here, we propose a new hydrolysis-assisted smearing method for Pt loading on a free-standing paper-type electrode. Polyacrylonitrile (PAN)-based nanofiber paper was used as the electrode, and it acted as a Pt support. Hydrolysis of the electrode tripled the number of active nucleation sites for Pt adsorption on the PAN nanofibers, thereby significantly enhancing the wettability of the nanofibers. This facilitated the uniform distribution of Pt nanoparticles without aggregate formation up to 40 wt% (about 0.8 mg/cm) with a particle size of about 3 nm. The catalytic current of the hydrolyzed Pt electrode in CHOH/HSO solution exceeded 213 mA/cm Pt mg, which was considerably greater than the current was 148 mA/cm Pt mg for an unhydrolyzed electrode.

摘要

催化剂的电化学活性强烈依赖于无团聚的单分散铂纳米颗粒的均匀分布。在此,我们提出一种新的水解辅助涂抹方法,用于在独立的纸型电极上负载铂。基于聚丙烯腈(PAN)的纳米纤维纸用作电极,并作为铂的载体。电极的水解使铂吸附在PAN纳米纤维上的活性成核位点数量增加了两倍,从而显著提高了纳米纤维的润湿性。这有助于铂纳米颗粒均匀分布,在不形成团聚的情况下,负载量可达40 wt%(约0.8 mg/cm),粒径约为3 nm。水解后的铂电极在CHOH/HSO溶液中的催化电流超过213 mA/cm Pt mg,这大大高于未水解电极的148 mA/cm Pt mg的电流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/325f8f4f1915/41598_2021_90536_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/7c5bff9a5aeb/41598_2021_90536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/ba191d2aafb1/41598_2021_90536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/ec8c3cdd07a2/41598_2021_90536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/7d7e1fa8166f/41598_2021_90536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/c2f5be8c1425/41598_2021_90536_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/8319e083a7eb/41598_2021_90536_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/325f8f4f1915/41598_2021_90536_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/7c5bff9a5aeb/41598_2021_90536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/ba191d2aafb1/41598_2021_90536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/ec8c3cdd07a2/41598_2021_90536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/7d7e1fa8166f/41598_2021_90536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/c2f5be8c1425/41598_2021_90536_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/8319e083a7eb/41598_2021_90536_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8caa/8169836/325f8f4f1915/41598_2021_90536_Fig7_HTML.jpg

相似文献

[1]
Immobilization of Pt nanoparticles on hydrolyzed polyacrylonitrile-based nanofiber paper.

Sci Rep. 2021-6-1

[2]
Preparation and thermal treatment influence on Pt-decorated electrospun carbon nanofiber electrocatalysts.

RSC Adv. 2019-9-2

[3]
Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene-carbon nanotube hybrid paper electrode.

Biosens Bioelectron. 2015-1-8

[4]
Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes.

Materials (Basel). 2020-2-5

[5]
Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells.

Nanoscale. 2012-8-7

[6]
High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs).

J Colloid Interface Sci. 2004-1-1

[7]
Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium.

Nanotechnology. 2015-4-24

[8]
Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

ChemSusChem. 2013-2-28

[9]
Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells.

Nanotechnology. 2005-7

[10]
A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing.

Biosens Bioelectron. 2011-5-27

引用本文的文献

[1]
Immobilization of Photocatalysts on Spider Silk-Based Membranes for Continuous Hydrogen Production.

ACS Omega. 2025-8-3

[2]
Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications.

Molecules. 2022-8-29

本文引用的文献

[1]
One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers.

Carbohydr Polym. 2018-12-6

[2]
Surface Decoration of Pt Nanoparticles via ALD with TiO Protective Layer on Polymeric Nanofibers as Flexible and Reusable Heterogeneous Nanocatalysts.

Sci Rep. 2017-10-17

[3]
Ultramicropore formation in PAN/camphor-based carbon nanofiber paper.

Chem Commun (Camb). 2010-1-8

[4]
Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism.

Langmuir. 2008-10-7

[5]
Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles.

Nature. 2001-7-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索