Independent researcher 00012 Guidonia Montecelio, Rome, Italy.
Microbiology (Reading). 2021 Jun;167(6). doi: 10.1099/mic.0.001060.
Bacterial nutrition is a fundamental aspect of pathogenesis. While the host environment is in principle nutrient-rich, hosts have evolved strategies to interfere with nutrient acquisition by pathogens. In turn, pathogens have developed mechanisms to circumvent these restrictions. Changing the availability of bioavailable metal ions is a common strategy used by hosts to limit bacterial replication. Macrophages and neutrophils withhold iron, manganese, and zinc ions to starve bacteria. Alternatively, they can release manganese, zinc, and copper ions to intoxicate microorganisms. Metals are essential micronutrients and participate in catalysis, macromolecular structure, and signalling. This review summarises our current understanding of how central carbon metabolism in pathogens adapts to local fluctuations in free metal ion concentrations. We focus on the transcriptomics and proteomics data produced in studies of the iron-sparing response in , the etiological agent of tuberculosis, and consequently generate a hypothetical model linking trehalose accumulation, succinate secretion and substrate-level phosphorylation in iron-starved . This review also aims to highlight a large gap in our knowledge of pathogen physiology: the interplay between metal homeostasis and central carbon metabolism, two cellular processes which are usually studied separately. Integrating metabolism and metal biology would allow the discovery of new weaknesses in bacterial physiology, leading to the development of novel and improved antibacterial therapies.
细菌的营养是发病机制的一个基本方面。虽然宿主环境在原则上是营养丰富的,但宿主已经进化出了干扰病原体获取营养的策略。反过来,病原体也发展出了规避这些限制的机制。改变可利用的生物可利用金属离子的可用性是宿主用来限制细菌复制的常见策略。巨噬细胞和中性粒细胞扣留铁、锰和锌离子以饿死细菌。或者,它们可以释放锰、锌和铜离子来毒害微生物。金属是必需的微量元素,参与催化、大分子结构和信号转导。这篇综述总结了我们目前对病原体中心碳代谢如何适应游离金属离子浓度的局部波动的理解。我们专注于铁节约反应的转录组学和蛋白质组学研究在结核分枝杆菌的病原体中的数据,因此生成了一个假设模型,将铁饥饿中的海藻糖积累、琥珀酸分泌和底物水平磷酸化联系起来。这篇综述还旨在强调我们对病原体生理学的认识存在一个很大的差距:金属稳态和中心碳代谢之间的相互作用,这两个细胞过程通常是分开研究的。整合代谢和金属生物学将允许发现细菌生理学的新弱点,从而开发新的和改进的抗菌治疗方法。