Walter Costa Maria Beatriz, Wernsdorfer Mark, Kehrer Alexander, Voigt Markus, Cundius Carina, Federbusch Martin, Eckelt Felix, Remmler Johannes, Schmidt Maria, Pehnke Sarah, Gärtner Christiane, Wehner Markus, Isermann Berend, Richter Heike, Telle Jörg, Kaiser Thorsten
Institute of Laboratory Medicine, Clinical Chemistry und Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany.
Faculty of Medicine, University of Leipzig, Leipzig, Germany.
JMIR Med Inform. 2021 Jun 3;9(6):e20407. doi: 10.2196/20407.
Laboratory results are of central importance for clinical decision making. The time span between availability and review of results by clinicians is crucial to patient care. Clinical decision support systems (CDSS) are computational tools that can identify critical values automatically and help decrease treatment delay.
With this work, we aimed to implement and evaluate a CDSS that supports health care professionals and improves patient safety. In addition to our experiences, we also describe its main components in a general manner to make it applicable to a wide range of medical institutions and to empower colleagues to implement a similar system in their facilities.
Technical requirements must be taken into account before implementing a CDSS that performs laboratory diagnostics (labCDSS). These can be planned within the functional components of a reactive software agent, a computational framework for such a CDSS.
We present AMPEL (Analysis and Reporting System for the Improvement of Patient Safety through Real-Time Integration of Laboratory Findings), a labCDSS that notifies health care professionals if a life-threatening medical condition is detected. We developed and implemented AMPEL at a university hospital and regional hospitals in Germany (University of Leipzig Medical Center and the Muldental Clinics in Grimma and Wurzen). It currently runs 5 different algorithms in parallel: hypokalemia, hypercalcemia, hyponatremia, hyperlactatemia, and acute kidney injury.
AMPEL enables continuous surveillance of patients. The system is constantly being evaluated and extended and has the capacity for many more algorithms. We hope to encourage colleagues from other institutions to design and implement similar CDSS using the theory, specifications, and experiences described in this work.
实验室检查结果对于临床决策至关重要。从结果可得至临床医生查看结果的时间间隔对患者护理至关重要。临床决策支持系统(CDSS)是一种计算工具,可自动识别危急值并有助于减少治疗延迟。
通过这项工作,我们旨在实施并评估一个支持医护人员并提高患者安全性的CDSS。除了分享我们的经验外,我们还以通用方式描述其主要组件,使其适用于广泛的医疗机构,并使同行能够在其机构中实施类似系统。
在实施执行实验室诊断的CDSS(labCDSS)之前,必须考虑技术要求。这些要求可以在反应式软件代理的功能组件内进行规划,反应式软件代理是此类CDSS的计算框架。
我们展示了AMPEL(通过实验室检查结果实时整合提高患者安全性分析与报告系统),这是一个labCDSS,如果检测到危及生命的医疗状况,它会通知医护人员。我们在德国的一家大学医院和地区医院(莱比锡大学医学中心以及格里马和武尔岑的穆尔登塔尔诊所)开发并实施了AMPEL。它目前并行运行5种不同算法:低钾血症、高钙血症、低钠血症、高乳酸血症和急性肾损伤。
AMPEL能够持续监测患者。该系统正在不断评估和扩展,并且有能力运行更多算法。我们希望鼓励其他机构的同行使用本文所述的理论、规范和经验来设计和实施类似的CDSS。