Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK.
Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
BMC Genomics. 2021 Jun 4;22(1):404. doi: 10.1186/s12864-021-07700-4.
Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa.
Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee.
Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.
近 50%的作物产量因病虫害而损失,植物和病原体在疾病爆发的放大协同进化过程中被锁定。20 世纪 20 年代,咖啡萎蔫病(Fusarium xylarioides)首次爆发,摧毁了西非和中非的咖啡生产。在成功管理之后,它后来再次出现,到 21 世纪初,它在埃塞俄比亚的阿拉比卡咖啡和东非和中非的罗布斯塔咖啡上构成了两次单独的流行。
在这里,我们使用跨越 52 年的六个历史文化收藏菌株的基因组测序来确定这些反复爆发背后的进化过程。使用 13782 个单拷贝直系同源物的系统发育重建表明,罗布斯塔种群起源于最初的爆发,而阿拉比卡种群是与其他菌株分化的姐妹分支。对参与致病作用的假定效应基因进行筛选表明,种群在基因组成和序列上的分化主要是通过谱系内的垂直过程。然而,15 个假定的效应基因显示出水平获得的证据,与 F. oxysporum 的基因具有密切的同源性。大多数基因在更广泛的支架内占据同源性较小的区域,而四个基因簇则占据一个 20kb 的支架,与 F. oxysporum 中一个移动致病性染色体上的一个区域具有很强的同源性,该区域上有已知的效应基因。由于缺乏整个移动染色体的匹配,我们仍然发现与 DNA 转座子密切相关,特别是先前提出的促进 F. oxysporum 中致病性基因水平转移的微型伊兰蒂马型转座子。这些发现支持了一个工作假设,即阿拉比卡和罗布斯塔种群部分通过与作为宿主的咖啡以及与咖啡间作的其他植物共享的 F. oxysporum 的转座介导的水平转移获得了不同的效应基因。
我们的研究结果表明,历史基因组学如何帮助揭示使真菌病原体跟上我们抵抗它们的努力的机制。我们列出的假定效应基因确定了真菌控制的可能未来靶标。反过来,水平转移机制和假定供体分类单元的知识可能有助于设计未来的间作策略,最大限度地减少密切相关的 Fusarium 分类单元之间效应基因转移的风险。