Macedo-Lima Matheus, Boyd Hannah M, Remage-Healey Luke
Neuroscience and Behavior Program.
Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, Massachusetts 01003.
J Neurosci. 2021 Jul 14;41(28):6050-6069. doi: 10.1523/JNEUROSCI.2823-20.2021.
Vocal learning species must form and extensively hone associations between sounds and social contingencies. In songbirds, dopamine signaling guides song motor production, variability, and motivation, but it is unclear how dopamine regulates fundamental auditory associations for learning new sounds. We hypothesized that dopamine regulates learning in the auditory pallium, in part by interacting with local neuroestradiol signaling. Here, we show that zebra finch auditory neurons frequently coexpress D1 receptor (D1R) protein, neuroestradiol-synthase, GABA, and parvalbumin (PV). Auditory classical conditioning increased neuroplasticity gene induction in D1R-positive neurons. , D1R pharmacological activation reduced the amplitude of GABAergic and glutamatergic currents and increased the latter's frequency. , D1R activation reduced the firing of putative interneurons, increased the firing of putative excitatory neurons, and made both neuronal types unable to adapt to novel stimuli. Together, these findings support the hypothesis that dopamine acting via D1Rs modulates auditory association in the songbird sensory pallium. Our key finding is that auditory forebrain D1 receptors (D1Rs) modulate auditory plasticity, in support of the hypothesis that dopamine modulates the formation of associations between sounds and outcomes. Recent work in songbirds has identified roles for dopamine in driving reinforcement learning and motor variability in song production. This leaves open whether dopamine shapes the initial events that are critical for learning vocalizations, e.g., auditory learning. Our study begins to address this question in the songbird caudomedial nidopallium (NCM), an analog of the mammalian secondary auditory cortex. Our findings indicate that dopamine receptors are important modulators of excitatory/inhibitory balance and sound association learning mechanisms in the NCM, a system that could be a fundamental feature of vertebrate ascending auditory pathways.
发声学习物种必须在声音与社会偶发事件之间形成并广泛强化关联。在鸣禽中,多巴胺信号传导引导着鸣唱运动的产生、变异性和动机,但尚不清楚多巴胺如何调节用于学习新声音的基本听觉关联。我们推测,多巴胺部分通过与局部神经雌二醇信号传导相互作用来调节听觉皮层中的学习。在此,我们表明斑胸草雀听觉神经元经常共表达D1受体(D1R)蛋白、神经雌二醇合成酶、GABA和小白蛋白(PV)。听觉经典条件反射增加了D1R阳性神经元中神经可塑性基因的诱导。此外,D1R的药理学激活降低了GABA能和谷氨酸能电流的幅度,并增加了后者的频率。此外,D1R激活减少了假定的中间神经元的放电,增加了假定的兴奋性神经元的放电,并使这两种神经元类型都无法适应新刺激。总之,这些发现支持了这样的假设,即通过D1R起作用的多巴胺调节鸣禽感觉皮层中的听觉关联。我们的关键发现是,听觉前脑D1受体(D1R)调节听觉可塑性,以支持多巴胺调节声音与结果之间关联形成的假设。最近在鸣禽中的研究已经确定了多巴胺在驱动强化学习和鸣唱产生中的运动变异性方面的作用。这留下了一个问题,即多巴胺是否塑造了对学习发声至关重要的初始事件,例如听觉学习。我们的研究开始在鸣禽的内侧巢皮质(NCM)中解决这个问题,NCM是哺乳动物次级听觉皮层的类似物。我们的发现表明,多巴胺受体是NCM中兴奋性/抑制性平衡和声音关联学习机制的重要调节因子,该系统可能是脊椎动物上行听觉通路的一个基本特征。