Suppr超能文献

扩大反向电渗析规模以从高浓度盐度梯度中产生能量。

Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients.

作者信息

Hulme A M, Davey C J, Tyrrel S, Pidou M, McAdam E J

机构信息

Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.

出版信息

J Memb Sci. 2021 Jun 1;627:119245. doi: 10.1016/j.memsci.2021.119245.

Abstract

Whilst reverse electrodialysis (RED) has been extensively characterised for saline gradient energy from seawater/river water (0.5 M/0.02 M), less is known about RED stack design for high concentration salinity gradients (4 M/0.02 M), important to closed loop applications (e.g. thermal-to-electrical, energy storage). This study therefore focuses on the scale-up of RED stacks for high concentration salinity gradients. Higher velocities were required to attain a maximum Open Circuit Voltage (OCV) for 4 M/0.02 M, which gives a measure of the electrochemical potential of the cell. The experimental OCV was also much below the theoretical OCV, due to the greater boundary layer resistance observed, which is distinct from 0.5 M/0.02 M. However, negative net power density (net produced electrical power divided by total membrane area) was demonstrated with 0.5 M/0.02 M for larger stacks using shorter residence times (three stack sizes tested: 10 × 10cm, 10 × 20cm and 10 × 40cm). In contrast, the highest net power density was observed at the shortest residence time for the 4 M/0.02 M concentration gradient, as the increased ionic flux compensated for the pressure drop. Whilst comparable net power densities were determined for the 10 × 10cm and 10 × 40cm stacks using the 4 M/0.02 M concentration gradient, the osmotic and ionic transport mechanisms are distinct. Increasing cell pair number improved maximum current density. This subsequently increased power density, due to the reduction in boundary layer resistance, and may therefore be used to improve thermodynamic efficiency and power density from RED for high concentrations. Although comparable power densities may be achieved for small and large stacks, large stacks maybe preferred for high concentration salinity gradients due to the comparative benefit in thermodynamic efficiency in single pass. The greater current achieved by large stacks may also be complemented by an increase in cell pair number and current density optimisation to increase power density and reduce exergy losses.

摘要

虽然反向电渗析(RED)已针对海水/河水(0.5M/0.02M)的盐度梯度能量进行了广泛表征,但对于高浓度盐度梯度(4M/0.02M)的RED堆栈设计了解较少,而这对于闭环应用(如热-电转换、能量存储)很重要。因此,本研究聚焦于高浓度盐度梯度下RED堆栈的放大。对于4M/0.02M的情况,需要更高的流速才能达到最大开路电压(OCV),OCV可衡量电池的电化学势。由于观察到更大的边界层电阻,实验测得的OCV也远低于理论OCV,这与0.5M/0.02M的情况不同。然而,对于使用较短停留时间的较大堆栈(测试了三种堆栈尺寸:10×10cm、10×20cm和10×40cm),0.5M/0.02M的情况下展示出了负的净功率密度(净产生的电功率除以总膜面积)。相比之下,对于4M/0.02M的浓度梯度,在最短停留时间观察到了最高的净功率密度,因为增加的离子通量补偿了压力降。虽然使用4M/0.02M浓度梯度时,10×10cm和10×40cm堆栈的净功率密度相当,但渗透和离子传输机制不同。增加电池对数可提高最大电流密度。这随后提高了功率密度,因为边界层电阻降低了,因此可用于提高高浓度下RED的热力学效率和功率密度。尽管小堆栈和大堆栈可能实现相当的功率密度,但对于高浓度盐度梯度,大堆栈可能更受青睐,因为在单程中热力学效率有相对优势。大堆栈实现的更大电流也可通过增加电池对数和优化电流密度来补充以提高功率密度并减少火用损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6599/8075804/cd07dc26228e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验