Suppr超能文献

工程化碱基切除适配体用于高特异性识别腺苷。

Engineering base-excised aptamers for highly specific recognition of adenosine.

作者信息

Li Yuqing, Liu Biwu, Huang Zhicheng, Liu Juewen

机构信息

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo Waterloo Ontario N2L 3G1 Canada

出版信息

Chem Sci. 2020 Feb 10;11(10):2735-2743. doi: 10.1039/d0sc00086h.

Abstract

The DNA aptamer for adenosine and ATP has been used as a model system for developing analytical biosensors. For practical reasons, it is important to distinguish adenosine from ATP, although this has yet to be achieved despite extensive efforts made on selection of new aptamers. We herein report a strategy of excising an adenine nucleotide from the backbone of a one-site adenosine aptamer, and the adenine-excised aptamer allowed highly specific binding of adenosine. Cognate analytes including AMP, ATP, guanosine, cytidine, uridine, and theophylline all failed to bind to the engineered aptamer according to the SYBR Green I (SGI) fluorescence spectroscopy and isothermal titration calorimetry (ITC) results. Our A-excised aptamer has two binding sites: the original aptamer binding site in the loop and the newly created one due to base excision from the DNA backbone. ITC demonstrated that the A-excised aptamer strand can bind to two adenosine molecules, with a of 14.8 ± 2.1 μM at 10 °C and entropy-driven binding. Since the wild-type aptamer cannot discriminate adenosine from AMP and ATP, we attributed this improved specificity to the excised site. Further study showed that these two sites worked cooperatively. Finally, the A-excised aptamer was tested in diluted fetal bovine serum and showed a limit of detection of 46.7 μM adenosine. This work provides a facile, cost-effective, and non-SELEX method to engineer existing aptamers for new features and better applications.

摘要

用于腺苷和三磷酸腺苷(ATP)的DNA适配体已被用作开发分析生物传感器的模型系统。出于实际原因,区分腺苷和ATP很重要,尽管在选择新的适配体方面已付出巨大努力,但这一目标尚未实现。我们在此报告了一种从单位点腺苷适配体主链上切除腺嘌呤核苷酸的策略,切除腺嘌呤后的适配体对腺苷具有高度特异性结合能力。根据SYBR Green I(SGI)荧光光谱和等温滴定量热法(ITC)的结果,包括一磷酸腺苷(AMP)、ATP、鸟苷、胞苷、尿苷和茶碱在内的同源分析物均无法与工程化适配体结合。我们切除腺嘌呤后的适配体有两个结合位点:环中的原始适配体结合位点和由于从DNA主链上切除碱基而新产生的结合位点。ITC表明,切除腺嘌呤后的适配体链可以结合两个腺苷分子,在10℃时解离常数为14.8±2.1μM,结合由熵驱动。由于野生型适配体无法区分腺苷与AMP和ATP,我们将这种提高的特异性归因于切除的位点。进一步研究表明,这两个位点协同工作。最后,在稀释的胎牛血清中对切除腺嘌呤后的适配体进行了测试,其对腺苷的检测限为46.7μM。这项工作提供了一种简便、经济高效且无需指数富集的配体系统进化技术(SELEX)的方法,用于改造现有适配体以获得新特性和更好的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11a9/8157715/8c5ec8fd6d70/d0sc00086h-f1.jpg

相似文献

1
Engineering base-excised aptamers for highly specific recognition of adenosine.
Chem Sci. 2020 Feb 10;11(10):2735-2743. doi: 10.1039/d0sc00086h.
2
Highly Specific Recognition of Guanosine Using Engineered Base-Excised Aptamers.
Chemistry. 2020 Oct 27;26(60):13644-13651. doi: 10.1002/chem.202001835. Epub 2020 Sep 24.
3
New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection.
Nucleic Acids Res. 2017 Jul 27;45(13):7593-7601. doi: 10.1093/nar/gkx517.
4
Selection and Characterization of DNA Aptamers for Cytidine and Uridine.
Chembiochem. 2024 Feb 16;25(4):e202300656. doi: 10.1002/cbic.202300656. Epub 2024 Jan 5.
5
Incorporation of Boronic Acid into Aptamer-Based Molecularly Imprinted Hydrogels for Highly Specific Recognition of Adenosine.
ACS Appl Bio Mater. 2020 May 18;3(5):2568-2576. doi: 10.1021/acsabm.9b00936. Epub 2019 Dec 12.
6
Cross-Binding of Four Adenosine/ATP Aptamers to Caffeine, Theophylline, and Other Methylxanthines.
Biochemistry. 2023 Aug 1;62(15):2280-2288. doi: 10.1021/acs.biochem.3c00260. Epub 2023 Jul 11.
7
A selective adenosine sensor derived from a triplex DNA aptamer.
Anal Bioanal Chem. 2011 Jul;400(9):3035-40. doi: 10.1007/s00216-011-4996-1. Epub 2011 May 6.
8
Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds.
Analyst. 2020 Oct 26;145(21):6753-6768. doi: 10.1039/d0an00886a.
9
Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides.
Biosens Bioelectron. 2015 Aug 15;70:188-93. doi: 10.1016/j.bios.2015.03.031. Epub 2015 Mar 17.
10
Cross-Binding of Adenosine by Aptamers Selected Using Theophylline.
Chembiochem. 2023 Dec 1;24(23):e202300566. doi: 10.1002/cbic.202300566. Epub 2023 Oct 12.

引用本文的文献

1
Mechanism of Dual-Site Recognition in a Classic DNA Aptamer.
J Chem Inf Model. 2024 Oct 14;64(19):7698-7708. doi: 10.1021/acs.jcim.4c01389. Epub 2024 Sep 27.
2
Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis.
Anal Bioanal Chem. 2022 Dec;414(29-30):8255-8261. doi: 10.1007/s00216-022-04354-3. Epub 2022 Sep 30.
3
Fluorescent Aptasensor for Highly Specific Detection of ATP Using a Newly Screened Aptamer.
Sensors (Basel). 2022 Mar 22;22(7):2425. doi: 10.3390/s22072425.
4
Advances and Challenges in Small-Molecule DNA Aptamer Isolation, Characterization, and Sensor Development.
Angew Chem Int Ed Engl. 2021 Jul 26;60(31):16800-16823. doi: 10.1002/anie.202008663. Epub 2021 Feb 9.
5
Accelerating Post-SELEX Aptamer Engineering Using Exonuclease Digestion.
J Am Chem Soc. 2021 Jan 20;143(2):805-816. doi: 10.1021/jacs.0c09559. Epub 2020 Dec 30.
6
Label-free profiling of DNA aptamer-small molecule binding using T5 exonuclease.
Nucleic Acids Res. 2020 Nov 18;48(20):e120. doi: 10.1093/nar/gkaa849.

本文引用的文献

1
Redox-Switchable Binding Properties of the ATP-Aptamer.
J Am Chem Soc. 2019 Oct 2;141(39):15567-15576. doi: 10.1021/jacs.9b06256. Epub 2019 Sep 17.
2
From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation.
Nucleic Acids Res. 2019 Sep 5;47(15):8154-8162. doi: 10.1093/nar/gkz578.
3
Elucidation and Structural Modeling of CD71 as a Molecular Target for Cell-Specific Aptamer Binding.
J Am Chem Soc. 2019 Jul 10;141(27):10760-10769. doi: 10.1021/jacs.9b03720. Epub 2019 Jul 1.
4
Molecular Engineering of Functional Nucleic Acid Nanomaterials toward In Vivo Applications.
Adv Healthc Mater. 2019 Mar;8(6):e1801158. doi: 10.1002/adhm.201801158. Epub 2019 Feb 6.
5
Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells.
Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2236-2240. doi: 10.1002/anie.201809337. Epub 2019 Jan 11.
7
Direct Screening for Cytometric Bead Assays for Adenosine Triphosphate.
ACS Sens. 2018 Oct 26;3(10):2071-2078. doi: 10.1021/acssensors.8b00224. Epub 2018 Sep 28.
8
Label-free fluorescent and electrochemical biosensors based on defective G-quadruplexes.
Biosens Bioelectron. 2018 Oct 30;118:1-8. doi: 10.1016/j.bios.2018.07.033. Epub 2018 Jul 18.
9
No Structure-Switching Required: A Generalizable Exonuclease-Mediated Aptamer-Based Assay for Small-Molecule Detection.
J Am Chem Soc. 2018 Aug 8;140(31):9961-9971. doi: 10.1021/jacs.8b04975. Epub 2018 Jul 26.
10
Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.
J Am Chem Soc. 2018 Jun 6;140(22):6780-6784. doi: 10.1021/jacs.8b03442. Epub 2018 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验