Suppr超能文献

漂移藻类积累和硝酸盐负荷对富营养化沿海沉积物氮循环的影响。

Effects of drift algae accumulation and nitrate loading on nitrogen cycling in a eutrophic coastal sediment.

机构信息

Water Studies, School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.

Department of Microbiology, Monash University, 3800, Victoria, Australia.

出版信息

Sci Total Environ. 2021 Oct 10;790:147749. doi: 10.1016/j.scitotenv.2021.147749. Epub 2021 May 19.

Abstract

The permeable (sandy) sediments that dominate the world's coastlines and continental shelves are highly exposed to nitrogen pollution, predominantly due to increased urbanisation and inefficient agricultural practices. This leads to eutrophication, accumulation of drift algae and changes in the reactions of nitrogen, including the potential to produce the greenhouse gas nitrous oxide (NO). Nitrogen pollution in coastal systems has been identified as a global environmental issue, but it remains unclear how this nitrogen is stored and processed by permeable sediments. We investigated the interaction of drift algae biomass and nitrate (NO) exposure on nitrogen cycling in permeable sediments that were impacted by high nitrogen loading. We treated permeable sediments with increasing quantities of added macroalgal material and NO and measured denitrification, dissimilatory NO reduction to ammonium (DNRA), anammox, and nitrous oxide (NO) production, alongside abundance of marker genes for nitrogen cycling and microbial community composition by metagenomics. We found that the presence of macroalgae dramatically increased DNRA and NO production in sediments without NO treatment, concomitant with increased abundance of nitrate-ammonifying bacteria (e.g. Shewanella and Arcobacter). Following NO treatment, DNRA and NO production dropped substantially while denitrification increased. This is explained by a shift in the relative abundance of nitrogen-cycling microorganisms under different NO exposure scenarios. Decreases in both DNRA and NO production coincided with increases in the marker genes for each step of the denitrification pathway (narG, nirS, norB, nosZ) and a decrease in the DNRA marker gene nrfA. These shifts were accompanied by an increased abundance of facultative denitrifying lineages (e.g. Pseudomonas and Marinobacter) with NO treatment. These findings identify new feedbacks between eutrophication and greenhouse gas emissions, and in turn have potential to inform biogeochemical models and mitigation strategies for marine eutrophication.

摘要

主导世界海岸线和大陆架的可渗透(沙质)沉积物高度暴露于氮污染之下,这主要是由于城市化的增加和农业效率低下所致。这导致富营养化、漂流藻类的积累以及氮的反应变化,包括产生温室气体氧化亚氮(NO)的潜力。沿海系统中的氮污染已被确定为全球性环境问题,但仍不清楚可渗透沉积物如何储存和处理这些氮。我们研究了受高氮负荷影响的可渗透沉积物中漂流藻类生物量和硝酸盐(NO)暴露对氮循环的相互作用。我们用越来越多的外加大型藻类物质和 NO 处理可渗透沉积物,并测量反硝化作用、异化硝酸盐还原为铵(DNRA)、厌氧氨氧化和氧化亚氮(NO)的产生,以及氮循环标记基因的丰度和微生物群落组成通过宏基因组学。我们发现,在没有 NO 处理的情况下,大型藻类的存在会极大地增加沉积物中的 DNRA 和 NO 的产生,同时增加硝酸盐氨化细菌(例如希瓦氏菌属和弧菌属)的丰度。在进行 NO 处理后,DNRA 和 NO 的产生大幅下降,而反硝化作用增加。这是由于在不同的 NO 暴露情况下,氮循环微生物的相对丰度发生了变化。DNRA 和 NO 产生的减少与每个反硝化途径(narG、nirS、norB、nosZ)的标记基因的增加以及 DNRA 标记基因 nrfA 的减少同时发生。这些变化伴随着具有 NO 处理的兼性脱氮菌(例如假单胞菌属和 Marinobacter 属)的丰度增加。这些发现确定了富营养化和温室气体排放之间的新反馈,反过来又有可能为海洋富营养化的生物地球化学模型和缓解策略提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验