Suppr超能文献

基于物理信息的深度学习在 CO2 封存场地响应预测中的应用。

Physics-informed deep learning for prediction of CO storage site response.

机构信息

Department of Engineering Science and Mechanics, The Pennsylvania State University, United States of America.

Department of Computer Science, The Pennsylvania State University, United States of America.

出版信息

J Contam Hydrol. 2021 Aug;241:103835. doi: 10.1016/j.jconhyd.2021.103835. Epub 2021 May 24.

Abstract

Accurate prediction of the CO plume migration and pressure is imperative for safe operation and economic management of carbon storage projects. Numerical reservoir simulations of CO flow could be used for this purpose allowing the operators and stakeholders to calculate the site response considering different operational scenarios and uncertainties in geological characterization. However, the computational toll of these high-fidelity simulations has motivated the recent development of data-driven models. Such models are less costly, but may overfit the data and produce predictions inconsistent with the underlying physical laws. Here, we propose a physics-informed deep learning method that uses deep neural networks but also incorporates flow equations to predict a carbon storage site response to CO injection. A 3D synthetic dataset is used to show the effectiveness of this modeling approach. The model approximates the temporal and spatial evolution of pressure and CO saturation and predicts water production rate over time (outputs), given the initial porosity, permeability and injection rate (inputs). First, we establish a baseline using data-driven deep learning models namely, Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM). To build a physics-informed model, the loss term is modified using the constraints defined by a simplified form of the governing partial differential equations (conservation of mass coupled with Darcy's law for a two-phase flow system). Our results indicate that incorporating the domain knowledge significantly improves the accuracy of predictions. The proposed modeling approach can be integrated in CO storage management to accurately predict the critical site response indicators for a range of relevant input parameters, even when limited training data is available.

摘要

准确预测 CO 羽流的运移和压力对于碳封存项目的安全运行和经济管理至关重要。可以使用 CO 流动的数值储层模拟来达到这一目的,从而使运营商和利益相关者能够在考虑不同操作场景和地质特征不确定性的情况下,计算出场地的响应。然而,这些高保真模拟的计算代价促使了最近数据驱动模型的发展。这些模型的成本较低,但可能会过度拟合数据,并产生与基础物理定律不一致的预测。在这里,我们提出了一种物理信息深度学习方法,该方法使用深度神经网络,但也纳入了流动方程,以预测 CO 注入对碳封存场地的响应。使用 3D 合成数据集来展示这种建模方法的有效性。该模型可以根据初始孔隙度、渗透率和注入率(输入)来预测 CO 饱和度和压力的时空演化以及随时间的产水率(输出)。首先,我们使用数据驱动的深度学习模型,即多层感知机(MLP)和长短时记忆网络(LSTM),建立一个基线。为了构建一个物理信息模型,我们使用简化形式的控制偏微分方程(质量守恒与两相流系统中的达西定律相结合)的约束来修改损失项。我们的结果表明,纳入领域知识可以显著提高预测的准确性。所提出的建模方法可以集成到 CO 存储管理中,以准确预测一系列相关输入参数的关键场地响应指标,即使在可用的训练数据有限的情况下也能做到这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验