Suppr超能文献

利用光学和 SAR 幅度图像进行滑坡识别:来自印度东北部锡金邦的案例研究。

Exploitation of optical and SAR amplitude imagery for landslide identification: a case study from Sikkim, Northeast India.

机构信息

NIIT University, Neemrana (Rajasthan), India.

Indian School of Mines), Indian Institute of Technology, Dhanbad (Jharkhand), 826004, India.

出版信息

Environ Monit Assess. 2021 Jun 5;193(7):386. doi: 10.1007/s10661-021-09119-6.

Abstract

Detection and mapping of landslides is one of the most important techniques used for reducing the impact of natural disasters especially in the Himalaya, owing to its high amount of tectonic deformation, seismicity, and unfavorable climatic conditions. Moreover, the northeastern part of the Himalaya, severely affected by landslides every monsoon, is poorly studied. The information on the inventories is inhomogeneous and lacking. In this context, satellite-based earth observation data, which has significantly advanced in the last decade and often serves as a potential source for data collection, monitoring, and damage assessment for disasters in a short time span, has been implemented. Keeping in mind the above framework, this study aims to exploit the potentials of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 optical imagery for identifying new landslides in vegetated and hilly areas of the northeastern part of India. In order to assess the potentials of our data and methodology, a landslide event which occurred on 13 August 2016 13:30 h (IST) in North Sikkim, India, triggered due to rainfall has been explored in detail. The landslide also resulted in the formation of a lake, 2.2 km in length and 290 m in width. Difficulty in procurement of cloud-free datasets immediately after the event led us to the use of Sentinel-1 SAR backscatter data, to assess its potential for this purpose. It is observed that the potential of SAR amplitude imagery is limited to different aspects as per the sensor look direction during the mode of acquisition. Furthermore, the present study also incorporates a change detection algorithm to evaluate the performance of the Sudden Landslide Identification Product (SLIP) model to identify new landslides using Sentinel-2 multispectral imagery. Overall, the results exhibit that integrated usage of both optical and SAR amplitude imagery may provide a plethora of information for identification and mapping of new landslides for damage assessment and early warning. All the above results combined together suggest this method for rapid identification of landslides in the Himalayan terrain with special emphasis on the northeastern part of the Himalaya. The automation of this method for future operational usage is also suggested.

摘要

滑坡的探测和制图是减少自然灾害影响的最重要技术之一,特别是在喜马拉雅地区,由于其大量的构造变形、地震活动和不利的气候条件。此外,喜马拉雅山脉东北部每年季风都会受到严重的滑坡影响,但研究却很少。有关滑坡目录的信息是不均匀的,也缺乏。在这种情况下,利用卫星对地观测数据,在过去十年中得到了显著的发展,并且经常作为在短时间内收集、监测和评估灾害的数据的潜在来源,已经得到了实施。考虑到上述框架,本研究旨在利用 Sentinel-1 合成孔径雷达(SAR)和 Sentinel-2 光学图像的潜力,在印度东北部植被覆盖和丘陵地区识别新的滑坡。为了评估我们的数据和方法的潜力,详细探讨了 2016 年 8 月 13 日 13:30 印度北锡金因降雨引发的滑坡事件。滑坡还形成了一个长 2.2 公里、宽 290 米的湖泊。由于事件发生后立即难以获得无云数据集,因此我们使用 Sentinel-1 SAR 后向散射数据来评估其在这方面的潜力。结果表明,SAR 幅度图像的潜力受到传感器在采集模式下的视向不同方面的限制。此外,本研究还结合了一种变化检测算法,以评估 Sudden Landslide Identification Product (SLIP) 模型使用 Sentinel-2 多光谱图像识别新滑坡的性能。总体而言,结果表明,光学和 SAR 幅度图像的综合使用可能为识别和绘制新滑坡提供大量信息,以进行损害评估和预警。综上所述,这种方法建议用于快速识别喜马拉雅山地区的滑坡,特别是喜马拉雅山脉东北部地区的滑坡。还建议对该方法进行自动化,以便将来用于业务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验