Suppr超能文献

极性电场在卤氧化铋光催化水分解中的作用

Role of the Polar Electric Field in Bismuth Oxyhalides for Photocatalytic Water Splitting.

作者信息

Dong Xu-Dong, Zhang Yi-Man, Zhao Zong-Yan

机构信息

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China.

出版信息

Inorg Chem. 2021 Jun 21;60(12):8461-8474. doi: 10.1021/acs.inorgchem.0c03220. Epub 2021 Jun 7.

Abstract

The built-in electric field generated by polar materials is one of the most effective strategies to promote the separation of photogenerated electron-hole pairs in the field of photocatalysis. However, because of the complexity and diversity of the built-in electric field in polar materials, it is not clear how to enhance the photocatalytic performance and how to control the polar electric field effectively. To this end, four-layered bismuth oxyhalides, BiOX, and BiOXO (X = Br, I) were synthesized by a simple hydrothermal method. X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis confirmed that they all have the structure characteristics of a sillenite phase. Scanning electron microscopy images show that they all have the morphology of nanosheets. Among them, BiOBrO was successfully synthesized and characterized for the first time in the present work. The order of photocatalytic performance (including carrier's lifetime, photocurrent density, and H evolution rate) of the four compounds is listed as follows: BiOBrO > BiOI > BiOIO > BiOBr. In the bulk of the BiOXO photocatalyst, the spontaneous polar built-in electric field along the [001] direction is the crucial factor to inhibit the recombination of photogenerated electron-hole pairs, while the surface polar electric field in BiOI can outstandingly inhibit the recombination of photogenerated electron-hole pairs due to the breaking of the mirror symmetry. Therefore, regulating the microstructure and composition of the structure unit, which generates the built-in electric field, can indeed control the magnitude, direction, and effects of built-in electric fields. In practice, we should carefully adjust the strategy according to the actual situation so as to reasonably design and use the polar electric field, giving full play to its role and enhancing the photocatalytic performance.

摘要

极性材料产生的内建电场是光催化领域促进光生电子 - 空穴对分离的最有效策略之一。然而,由于极性材料内建电场的复杂性和多样性,目前尚不清楚如何提高光催化性能以及如何有效地控制极性电场。为此,采用简单水热法合成了四层卤氧化铋BiOX和BiOXO(X = Br,I)。X射线衍射、傅里叶变换红外光谱和X射线光电子能谱分析证实它们都具有类硅铈矿相的结构特征。扫描电子显微镜图像表明它们都具有纳米片的形貌。其中,BiOBrO在本工作中首次成功合成并表征。四种化合物的光催化性能(包括载流子寿命、光电流密度和析氢速率)顺序如下:BiOBrO > BiOI > BiOIO > BiOBr。在BiOXO光催化剂本体中,沿[001]方向的自发极性内建电场是抑制光生电子 - 空穴对复合的关键因素,而BiOI中的表面极性电场由于镜面对称性的破坏能够显著抑制光生电子 - 空穴对的复合。因此,调节产生内建电场的结构单元的微观结构和组成确实可以控制内建电场的大小、方向和作用。在实际应用中,我们应根据实际情况仔细调整策略,以便合理设计和利用极性电场,充分发挥其作用并提高光催化性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验