Suppr超能文献

新型非晶态氧硫化物固体电解质材料:阴离子交换、电化学性质以及通过界面修饰抑制锂枝晶

New Amorphous Oxy-Sulfide Solid Electrolyte Material: Anion Exchange, Electrochemical Properties, and Lithium Dendrite Suppression via Interfacial Modification.

作者信息

Zhao Ran, Hu Guantai, Kmiec Steven, Gebhardt Ryan, Whale Alison, Wheaton Jacob, Martin Steve W

机构信息

Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50010, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Jun 16;13(23):26841-26852. doi: 10.1021/acsami.0c22305. Epub 2021 Jun 7.

Abstract

Glassy sulfide materials have been considered as promising candidates for solid-state electrolytes (SSEs) in lithium and sodium metal (LM and SM) batteries. While much of the current research on lithium glassy SSEs (GSSEs) has focused on the pure sulfide binary LiS + PS system, we have expanded these efforts by examining mixed-glass-former (MGF) compositions which have mixtures of glass formers, such as P and Si, which allow melt-quenching synthesis under ambient pressure and therefore the use of grain-boundary-free SSEs. We have doped these MGF compositions with oxygen to improve the chemical, electrochemical, and thermal properties of these glasses. In this work, we report on the short-range order (SRO), namely atomic-level, structures of LiS + SiS + PO MGF mixed oxy-sulfide glasses and, for the first time, study the critical current density (CCD) of these Si-doped oxy-sulfide GSSEs in LM symmetric cells. The samples were synthesized by planetary ball milling (PBM), and it was observed that a certain minimum milling time was necessary to achieve a final SRO structure. To address the short-circuiting lithium dendrite (LD) problems that were observed in these GSSEs, we demonstrate a simple and novel strategy for these Si-doped oxy-sulfide GSSEs to engineer the LM-GSSE interface by forming an interlayer via heat treatment. Stable cycling to ∼1200 h at a capacity of 2 mAh·cm per discharge/charge cycle under a current density of 1 mA·cm is achieved. These results indicate that these MGF oxy-sulfide GSSEs combined with an optimized interfacial modification may find use in LM, and by extrapolation, SM, batteries.

摘要

玻璃硫化物材料被认为是锂金属电池和钠金属电池固态电解质(SSE)的有潜力候选材料。虽然目前对锂玻璃态固态电解质(GSSE)的许多研究都集中在纯硫化物二元LiS + PS体系上,但我们通过研究混合玻璃形成剂(MGF)成分扩展了这些工作,这些成分含有玻璃形成剂的混合物,如P和Si,这使得在常压下进行熔体淬火合成成为可能,从而可以使用无晶界的固态电解质。我们用氧对这些MGF成分进行了掺杂,以改善这些玻璃的化学、电化学和热性能。在这项工作中,我们报道了LiS + SiS + PO MGF混合氧硫化物玻璃的短程有序(SRO),即原子级结构,并首次研究了这些硅掺杂氧硫化物GSSE在锂金属对称电池中的临界电流密度(CCD)。样品通过行星球磨(PBM)合成,观察到需要一定的最短球磨时间才能获得最终的SRO结构。为了解决在这些GSSE中观察到的锂枝晶(LD)短路问题,我们展示了一种简单而新颖的策略,即通过热处理形成中间层,对这些硅掺杂氧硫化物GSSE进行锂金属 - GSSE界面工程。在1 mA·cm的电流密度下,每个充放电循环容量为2 mAh·cm时,实现了稳定循环至约1200小时。这些结果表明,这些MGF氧硫化物GSSE与优化的界面改性相结合,可能在锂金属电池中得到应用,并且通过推断,在钠金属电池中也可能得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验