Vium Inc., San Mateo, CA.
ILAR J. 2021 Dec 31;62(1-2):223-231. doi: 10.1093/ilar/ilab018.
The failure of animal studies to translate to effective clinical therapeutics has driven efforts to identify underlying cause and develop solutions that improve the reproducibility and translatability of preclinical research. Common issues revolve around study design, analysis, and reporting as well as standardization between preclinical and clinical endpoints. To address these needs, recent advancements in digital technology, including biomonitoring of digital biomarkers, development of software systems and database technologies, as well as application of artificial intelligence to preclinical datasets can be used to increase the translational relevance of preclinical animal research. In this review, we will describe how a number of innovative digital technologies are being applied to overcome recurring challenges in study design, execution, and data sharing as well as improving scientific outcome measures. Examples of how these technologies are applied to specific therapeutic areas are provided. Digital technologies can enhance the quality of preclinical research and encourage scientific collaboration, thus accelerating the development of novel therapeutics.
动物研究未能转化为有效的临床治疗方法,这促使人们努力确定潜在原因,并开发出能够提高临床前研究的可重复性和可转化性的解决方案。常见的问题围绕着研究设计、分析和报告以及临床前和临床终点之间的标准化。为了解决这些需求,数字技术的最新进展,包括数字生物标志物的生物监测、软件系统和数据库技术的开发,以及人工智能在临床前数据集上的应用,可以用于提高临床前动物研究的转化相关性。在这篇综述中,我们将描述一些创新的数字技术如何被应用于克服研究设计、执行和数据共享中反复出现的挑战,以及改进科学结果衡量标准。提供了这些技术如何应用于特定治疗领域的示例。数字技术可以提高临床前研究的质量,鼓励科学合作,从而加速新疗法的开发。
Contemp Clin Trials. 2021-1
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2024-3
Rev Sci Tech. 2021-8
Turk Kardiyol Dern Ars. 2024-1
Nat Rev Rheumatol. 2020-7-24
Zhonghua Yu Fang Yi Xue Za Zhi. 2022-12-6