Faulkner Regina L, Wall Nicholas R, Callaway Edward M, Cline Hollis T
Neuroscience Department and The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla CA.
The Salk Institute for Biological Sciences, La Jolla, CA.
eNeuro. 2021 Jun 7;8(4). doi: 10.1523/ENEURO.0477-20.2021.
The Xenopus laevis experimental system has provided significant insight into the development and plasticity of neural circuits. Xenopus neuroscience research would be enhanced by additional tools to study neural circuit structure and function. Rabies viruses are powerful tools to label and manipulate neural circuits and have been widely used to study mesoscale connectomics. Whether rabies virus can be used to transduce neurons and express transgenes in Xenopus has not been systematically investigated. Glycoprotein-deleted rabies virus transduces neurons at the axon terminal and retrogradely labels their cell bodies. We show that glycoprotein-deleted rabies virus infects local and projection neurons in the Xenopus tadpole when directly injected into brain tissue. Pseudotyping glycoprotein-deleted rabies with EnvA restricts infection to cells with exogenous expression of the EnvA receptor, TVA. EnvA pseudotyped virus specifically infects tadpole neurons with promoter-driven expression of TVA, demonstrating its utility to label targeted neuronal populations. Neuronal cell types are defined by a combination of features including anatomical location, expression of genetic markers, axon projection sites, morphology, and physiological properties. We show that driving TVA expression in one hemisphere and injecting EnvA pseudotyped virus into the contralateral hemisphere, retrogradely labels neurons defined by cell body location and axon projection site. Using this approach, rabies can be used to identify cell types in Xenopus brain and simultaneously to express transgenes which enable monitoring or manipulation of neuronal activity. This makes rabies a valuable tool to study the structure and function of neural circuits in Xenopus.Studies in Xenopus have contributed a great deal to our understanding of brain circuit development and plasticity, regeneration, and hormonal regulation of behavior and metamorphosis. Here, we show that recombinant rabies virus transduces neurons in the Xenopus tadpole, enlarging the toolbox that can be applied to studying Xenopus brain. Rabies can be used for retrograde labeling and expression of a broad range of transgenes including fluorescent proteins for anatomical tracing and studying neuronal morphology, voltage or calcium indicators to visualize neuronal activity, and photo- or chemosensitive channels to control neuronal activity. The versatility of these tools enables diverse experiments to analyze and manipulate Xenopus brain structure and function, including mesoscale connectivity.
非洲爪蟾实验系统为深入了解神经回路的发育和可塑性提供了重要见解。若有更多研究神经回路结构和功能的工具,非洲爪蟾神经科学研究将得到加强。狂犬病病毒是标记和操纵神经回路的强大工具,已被广泛用于研究中尺度连接组学。狂犬病病毒能否用于在非洲爪蟾中转导神经元并表达转基因,尚未得到系统研究。缺失糖蛋白的狂犬病病毒在轴突末端转导神经元,并逆行标记其细胞体。我们发现,将缺失糖蛋白的狂犬病病毒直接注射到脑组织中时,它会感染非洲爪蟾蝌蚪中的局部神经元和投射神经元。用EnvA对缺失糖蛋白的狂犬病病毒进行假型包装,可将感染限制在具有EnvA受体TVA外源表达的细胞中。EnvA假型病毒通过启动子驱动的TVA表达特异性感染蝌蚪神经元,证明了其标记靶向神经元群体的效用。神经元细胞类型由多种特征共同定义,包括解剖位置、遗传标记的表达、轴突投射部位、形态和生理特性。我们发现,在一个半球驱动TVA表达,并将EnvA假型病毒注射到对侧半球,可逆行标记由细胞体位置和轴突投射部位定义的神经元。使用这种方法,狂犬病可用于识别非洲爪蟾脑中的细胞类型,同时表达能够监测或操纵神经元活动的转基因。这使得狂犬病成为研究非洲爪蟾神经回路结构和功能的宝贵工具。对非洲爪蟾的研究为我们理解脑回路发育与可塑性、再生以及行为和变态的激素调节做出了巨大贡献。在此,我们表明重组狂犬病病毒可在非洲爪蟾蝌蚪中转导神经元,扩充了可用于研究非洲爪蟾脑的工具库。狂犬病可用于逆行标记和表达多种转基因,包括用于解剖追踪和研究神经元形态的荧光蛋白、用于可视化神经元活动的电压或钙指示剂,以及用于控制神经元活动的光敏感或化学敏感通道。这些工具的多功能性使我们能够进行各种实验来分析和操纵非洲爪蟾脑的结构和功能,包括中尺度连接性。