Suppr超能文献

通过功能扩增子测序和10×宏基因组学剖析具有疾病抑制作用的根际微生物群落

Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics.

作者信息

Tracanna Vittorio, Ossowicki Adam, Petrus Marloes L C, Overduin Sam, Terlouw Barbara R, Lund George, Robinson Serina L, Warris Sven, Schijlen Elio G W M, van Wezel Gilles P, Raaijmakers Jos M, Garbeva Paolina, Medema Marnix H

机构信息

Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands.

Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

出版信息

mSystems. 2021 Jun 29;6(3):e0111620. doi: 10.1128/mSystems.01116-20. Epub 2021 Jun 8.

Abstract

Disease-suppressive soils protect plants against soilborne fungal pathogens that would otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the antagonistic activity of the microbial community associated with the plant roots. Considering the enormous taxonomic and functional diversity of the root-associated microbiome, identification of the microbial genera and mechanisms underlying this phenotype is challenging. One approach to unravel the underlying mechanisms is to identify metabolic pathways enriched in the disease-suppressive microbial community, in particular, pathways that harbor natural products with antifungal properties. An important class of these natural products includes peptides produced by nonribosomal peptide synthetases (NRPSs). Here, we applied functional amplicon sequencing of NRPS-associated adenylation domains (A domains) to a collection of eight soils that are suppressive or nonsuppressive (i.e., conducive) to Fusarium culmorum, a fungal root pathogen of wheat. To identify functional elements in the root-associated bacterial community, we developed an open-source pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster reconstruction through analyzing A domain co-occurrence across samples. We applied this pipeline to rhizosphere communities from four disease-suppressive and four conducive soils and found significant similarities in NRPS repertoires between suppressive soils. Specifically, several siderophore biosynthetic gene clusters were consistently associated with suppressive soils, hinting at competition for iron as a potential mechanism of suppression. Finally, to validate dom2BGC and to allow more unbiased functional metagenomics, we performed 10× metagenomic sequencing of one suppressive soil, leading to the identification of multiple gene clusters potentially associated with the disease-suppressive phenotype. Soil-borne plant-pathogenic fungi continue to be a major threat to agriculture and horticulture. The genus Fusarium in particular is one of the most devastating groups of soilborne fungal pathogens for a wide range of crops. Our approach to develop novel sustainable strategies to control this fungal root pathogen is to explore and exploit an effective, yet poorly understood naturally occurring protection, i.e., disease-suppressive soils. After screening 28 agricultural soils, we recently identified four soils that were suppressive to root disease of wheat caused by Fusarium culmorum. We also confirmed, via sterilization and transplantation, that the microbiomes of these soils play a significant role in the suppressive phenotype. By adopting nonribosomal peptide synthetase (NRPS) functional amplicon screening of suppressive and conducive soils, we here show how computationally driven comparative analysis of combined functional amplicon and metagenomic data can unravel putative mechanisms underlying microbiome-associated plant phenotypes.

摘要

抑病土壤可保护植物免受土传真菌病原体的侵害,否则这些病原体会导致根部感染。在大多数情况下,土壤抑病性是由与植物根系相关的微生物群落的拮抗活性介导的。考虑到根际微生物组在分类学和功能上的巨大多样性,鉴定这种表型背后的微生物属和机制具有挑战性。一种揭示潜在机制的方法是鉴定在抑病微生物群落中富集的代谢途径,特别是那些含有具有抗真菌特性的天然产物的途径。这类天然产物的一个重要类别包括由非核糖体肽合成酶(NRPS)产生的肽。在这里,我们将与NRPS相关的腺苷化结构域(A结构域)的功能扩增子测序应用于一组八种土壤,这些土壤对小麦的真菌根病原体禾谷镰刀菌具有抑制或非抑制(即感病)作用。为了鉴定根际细菌群落中的功能元件,我们开发了一个开源管道,称为dom2BGC,用于通过分析样本间A结构域的共现情况进行扩增子注释和推定基因簇重建。我们将这个管道应用于来自四种抑病土壤和四种感病土壤的根际群落,发现抑病土壤之间的NRPS组成具有显著相似性。具体而言,几个铁载体生物合成基因簇始终与抑病土壤相关,这暗示铁竞争是一种潜在的抑制机制。最后,为了验证dom2BGC并进行更无偏倚的功能宏基因组学研究,我们对一种抑病土壤进行了10×宏基因组测序,从而鉴定出多个可能与抑病表型相关的基因簇。土传植物病原真菌仍然是农业和园艺业的主要威胁。特别是镰刀菌属是对多种作物最具毁灭性的土传真菌病原体群体之一。我们开发新型可持续策略来控制这种真菌根病原体的方法是探索和利用一种有效但尚未充分了解的自然保护机制,即抑病土壤。在筛选了28种农业土壤后,我们最近鉴定出四种对禾谷镰刀菌引起的小麦根病具有抑制作用的土壤。我们还通过灭菌和移植证实,这些土壤的微生物群落在抑制表型中发挥着重要作用。通过对抑病和感病土壤进行非核糖体肽合成酶(NRPS)功能扩增子筛选,我们在此展示了如何通过对功能扩增子和宏基因组数据的计算驱动比较分析来揭示与微生物群相关的植物表型的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5659/8269251/cf76f1bfacc7/msystems.01116-20-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验