Suppr超能文献

利用季节性气候预测来预测湖泊和水库的水温。

Forecasting water temperature in lakes and reservoirs using seasonal climate prediction.

作者信息

Mercado-Bettín Daniel, Clayer Francois, Shikhani Muhammed, Moore Tadhg N, Frías María Dolores, Jackson-Blake Leah, Sample James, Iturbide Maialen, Herrera Sixto, French Andrew S, Norling Magnus Dahler, Rinke Karsten, Marcé Rafael

机构信息

Catalan Institute for Water Research (ICRA), Girona, Spain; Universitat de Girona, Girona, Spain.

Norwegian Institute for Water Research (NIVA), Oslo, Norway.

出版信息

Water Res. 2021 Aug 1;201:117286. doi: 10.1016/j.watres.2021.117286. Epub 2021 May 24.

Abstract

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reservoirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynamics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a feasible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in this study for four catchment-lake systems to help in their proactive management. We assessed the performance of the resulting seasonal forecasts of discharge and water temperature by comparing them with hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Forecasts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low performance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had higher performance in natural lakes than in reservoirs, which means human water control is a relevant factor affecting predictability, and the performance increases with water depth in all four case studies. Further investigation into the skillful water temperature predictions should aim to identify the extent to which performance is a consequence of thermal inertia (i.e., lead-in conditions).

摘要

季节性气候预测会对后续月份的气象变量做出概率性预测。这为预测季节性气候异常对流域地表水收支以及相关水体(如湖泊或水库)水热动力学的影响提供了一种潜在资源。要获得影响变量(如流量和水温)的季节性预测,需要在季节性气候预测与模拟水文、湖泊水动力学和热力状况的影响模型之间建立联系。然而,对于利益相关者和水科学界而言,这种联系仍然具有挑战性,主要是因为这些预测具有概率性质。在本文中,我们介绍了一种可行、稳健且开源的工作流程,该流程将季节性气候预测与水文和湖泊模型相结合,以生成流量和水温剖面的季节性预测。该工作流程设计为适用于任何流域以及相关的湖泊或水库,并且在本研究中针对四个流域 - 湖泊系统进行了优化,以帮助进行主动管理。我们通过将生成的流量和水温季节性预测与水文和湖泊(伪)观测数据(再分析数据)进行比较,评估了其性能。具体而言,我们使用过去预测和再分析的数据样本分析历史性能,以获取有关季节性预测系统预测特定事件的技能(性能或质量)的信息。我们使用了欧洲中期天气预报中心(ECMWF)的当前季节性气候预测系统(SEAS5)和再分析数据(ERA5)。我们发现,由于四个案例研究地点(欧洲和澳大利亚南部)在季节性时间尺度上的可预测性有限,对于所考虑的大气变量,季节性预测表现出无到低的性能(技能)。尽管如此,除了一个案例研究外,流量的季节性预测在其他所有案例研究中都表现出一定的技能。此外,水温的季节性预测在天然湖泊中的性能高于水库,这意味着人类的水控制是影响可预测性的一个相关因素,并且在所有四个案例研究中,性能随水深增加而提高。对水温预测技能的进一步研究应旨在确定性能在多大程度上是热惯性(即前期条件)的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验