Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
Phys Chem Chem Phys. 2021 Jun 16;23(23):13381-13388. doi: 10.1039/d1cp01304a.
The efficiency of cascade reactions, which consist of multiple chemical transformations that occur in a single pot without purification steps, is limited by the transport efficiency of intermediates between adjacent steps. Electrostatic channeling is a proven strategy for intermediate transfer in natural chemical cascades, but implementation into artificial cascades remains a challenge. Here, we combine infrequent metadynamics (InMetaD), umbrella sampling (US), and kinetic Monte Carlo (KMC) models to computationally study the transfer mechanism of glucose-6-phosphate (G6P) on a poly-arginine peptide bridging hexokinase (HK) and glucose-6-dehydrogenase (G6PDH). Transport of G6P by hopping in the presence of poly-arginine peptides is shown to be a rare event, and InMetaD is used to compute the hopping activation energy. US simulations capture the configurational change in the desorption process and enable the determination of the desorption energy. Parameterized by these results, a KMC model is used to estimate transport efficiency for the bridged enzyme complex. Results are compared to a similar complex using a poly-lysine bridge, using kinetic lag time as a metric. Even at a high ionic strength of 120 mM, poly-arginine peptides may be capable of more efficient transport as compared to poly-lysine, with a predicted lag time of 6 seconds for poly-arginine, compared to a previously reported lag time of 59 seconds for poly-lysine. This work indicates that poly-arginine peptides may be an improved bridge structure for electrostatic channeling of anionic intermediates.
级联反应的效率受到相邻步骤之间中间体传输效率的限制,级联反应由单个容器中发生的多个化学转化组成,无需进行纯化步骤。静电通道是在天然化学级联中进行中间体转移的一种经过验证的策略,但将其应用于人工级联仍然是一个挑战。在这里,我们结合了不频繁的元动力学(InMetaD)、伞状采样(US)和动力学蒙特卡罗(KMC)模型,从计算角度研究葡萄糖-6-磷酸(G6P)在多聚精氨酸肽桥联己糖激酶(HK)和葡萄糖-6-磷酸脱氢酶(G6PDH)上的转移机制。研究表明,多聚精氨酸肽存在时,G6P 通过跳跃进行传输是一种罕见事件,并且使用 InMetaD 来计算跳跃活化能。US 模拟捕获了解吸过程中的构象变化,并能够确定解吸能。通过这些结果进行参数化,使用 KMC 模型来估计桥连酶复合物的传输效率。将结果与使用多聚赖氨酸桥的类似复合物进行比较,以动力学滞后时间作为指标。即使在 120mM 的高离子强度下,与多聚赖氨酸相比,多聚精氨酸肽可能能够更有效地传输,预测的多聚精氨酸滞后时间为 6 秒,而之前报道的多聚赖氨酸滞后时间为 59 秒。这项工作表明,多聚精氨酸肽可能是阴离子中间体静电通道的改进桥接结构。