Suppr超能文献

使用交叉验证逐步回归和蒙特卡罗模拟对控制策略进行准确界定。

Accurate definition of control strategies using cross validated stepwise regression and Monte Carlo simulation.

作者信息

Yang Patrick Y, Hui Cerintha J, Tien Daniel J, Snowden Andrew W, Derfus Gayle E, Opel Cary F

机构信息

Biologics Development, Gilead Sciences, 4010 Ocean Ranch Blvd, Oceanside, CA 92056, United States.

出版信息

J Biotechnol. 2019;306S:100006. doi: 10.1016/j.btecx.2019.100006. Epub 2019 Apr 28.

Abstract

Drug manufacturing processes must consistently deliver safe and effective product. A key part of achieving this is process validation utilizing Quality by Design (QbD) principles. To meet process validation requirements, process characterization (PC) studies are often performed to expand process understanding and establish an appropriate control strategy that enables the manufacturing process to consistently deliver a target product profile. Two key elements of the control strategy resulting from PC work are a list of critical process parameters (CPPs) and defined operating ranges (ORs). These are frequently derived based on mathematical models describing the relationship between process parameters and critical quality attributes (CQAs). Risk assessment and design of experiments (DOE) techniques are effectively deployed in the industry to identify parameters to study and build process understanding. However, traditional data analysis techniques do not fully utilize the data produced by these studies. In particular, stepwise regression algorithms based on p-values are prone to generate false positives and overfit data, potentially leading to unnecessarily complex control strategies. Many of the deficiencies of traditional stepwise regression can be alleviated by applying cross validation to stepwise regression algorithms, as well as Monte Carlo simulations to estimate model accuracy and predict CQA distributions. These methods can greatly enhance process understanding and assist in the selection of CPPs. A series of PC studies were performed in bioreactors to evaluate a process to produce a recombinant monoclonal antibody. The studies examined process parameters such as dissolved oxygen, pH, temperature, inoculation density, as well as cell density at two key process steps. The resulting data were analyzed using several Monte Carlo based methods. First, cross validation was used to determine model size and select parameters to be included in the model. Next, Monte Carlo cross validation was used to compare the accuracy of different models. Finally, simulated CQA profiles were generated to validate proposed ORs. This workflow provides greater process understanding based on a given PC data set and provides higher statistical confidence in both CPP selection and establishment of a control strategy.

摘要

药品生产工艺必须始终如一地生产出安全有效的产品。实现这一目标的关键部分是利用质量源于设计(QbD)原则进行工艺验证。为满足工艺验证要求,通常会进行工艺表征(PC)研究,以加深对工艺的理解,并建立适当的控制策略,使生产工艺能够始终如一地生产出符合目标的产品质量特征。PC工作产生的控制策略的两个关键要素是关键工艺参数(CPP)列表和定义的操作范围(OR)。这些通常是基于描述工艺参数与关键质量属性(CQA)之间关系的数学模型得出的。风险评估和实验设计(DOE)技术在该行业中得到有效应用,以识别要研究的参数并建立对工艺的理解。然而,传统的数据分析技术并未充分利用这些研究产生的数据。特别是,基于p值的逐步回归算法容易产生误报和数据过度拟合,可能导致控制策略不必要地复杂。通过将交叉验证应用于逐步回归算法,以及使用蒙特卡罗模拟来估计模型准确性和预测CQA分布,可以缓解传统逐步回归的许多不足。这些方法可以极大地增强对工艺的理解,并有助于选择CPP。在生物反应器中进行了一系列PC研究,以评估一种生产重组单克隆抗体的工艺。这些研究考察了诸如溶解氧、pH值、温度、接种密度等工艺参数,以及两个关键工艺步骤中的细胞密度。使用几种基于蒙特卡罗的方法对所得数据进行了分析。首先,使用交叉验证来确定模型规模并选择要纳入模型的参数。其次,使用蒙特卡罗交叉验证来比较不同模型的准确性。最后,生成模拟的CQA分布图以验证提议的OR。此工作流程基于给定的PC数据集提供了对工艺的更深入理解,并在CPP选择和控制策略建立方面提供了更高的统计置信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验