Krishnamoorthy Aravind, Nomura Ken-Ichi, Baradwaj Nitish, Shimamura Kohei, Rajak Pankaj, Mishra Ankit, Fukushima Shogo, Shimojo Fuyuki, Kalia Rajiv, Nakano Aiichiro, Vashishta Priya
Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering and Materials Science, Department of Physics & Astronomy, and Department of Computer Science, University of Southern California, Los Angeles, California 90089, USA.
Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan.
Phys Rev Lett. 2021 May 28;126(21):216403. doi: 10.1103/PhysRevLett.126.216403.
The static dielectric constant ϵ_{0} and its temperature dependence for liquid water is investigated using neural network quantum molecular dynamics (NNQMD). We compute the exact dielectric constant in canonical ensemble from NNQMD trajectories using fluctuations in macroscopic polarization computed from maximally localized Wannier functions (MLWF). Two deep neural networks are constructed. The first, NNQMD, is trained on QMD configurations for liquid water under a variety of temperature and density conditions to learn potential energy surface and forces and then perform molecular dynamics simulations. The second network, NNMLWF, is trained to predict locations of MLWF of individual molecules using the atomic configurations from NNQMD. Training data for both the neural networks is produced using a highly accurate quantum-mechanical method, DFT-SCAN that yields an excellent description of liquid water. We produce 280×10^{6} configurations of water at 7 temperatures using NNQMD and predict MLWF centers using NNMLWF to compute the polarization fluctuations. The length of trajectories needed for a converged value of the dielectric constant at 0°C is found to be 20 ns (40×10^{6} configurations with 0.5 fs time step). The computed dielectric constants for 0, 15, 30, 45, 60, 75, and 90°C are in good agreement with experiments. Our scalable scheme to compute dielectric constants with quantum accuracy is also applicable to other polar molecular liquids.
利用神经网络量子分子动力学(NNQMD)研究了液态水的静态介电常数ϵ₀及其温度依赖性。我们使用从最大局域化万尼尔函数(MLWF)计算出的宏观极化涨落,从NNQMD轨迹计算正则系综中的精确介电常数。构建了两个深度神经网络。第一个是NNQMD,在各种温度和密度条件下对液态水的量子分子动力学(QMD)构型进行训练,以学习势能面和力,然后进行分子动力学模拟。第二个网络NNMLWF,使用来自NNQMD的原子构型进行训练,以预测单个分子的MLWF位置。两个神经网络的训练数据均使用一种高精度的量子力学方法DFT-SCAN生成,该方法能很好地描述液态水。我们使用NNQMD在7个温度下生成了2.8×10⁸个水的构型,并使用NNMLWF预测MLWF中心以计算极化涨落。发现在0°C时介电常数收敛值所需的轨迹长度为20 ns(4×10⁷个构型,时间步长为0.5 fs)。计算得到的0、15、30、45、60、75和90°C的介电常数与实验结果吻合良好。我们这种具有量子精度的可扩展介电常数计算方案也适用于其他极性分子液体。