Suppr超能文献

应用标准化脑电图模式分类评估心脏骤停后的神经预后:一项回顾性分析。

Application of a standardized EEG pattern classification in the assessment of neurological prognosis after cardiac arrest: A retrospective analysis.

机构信息

Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Clinical Neurophysiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

出版信息

Resuscitation. 2021 Aug;165:38-44. doi: 10.1016/j.resuscitation.2021.05.037. Epub 2021 Jun 11.

Abstract

INTRODUCTION

Electroencephalogram (EEG) is used in the neurological prognostication after cardiac arrest. "Highly malignant" EEG patterns classified according to Westhall have a high specificity for poor neurological outcome when applied within protocols of recent studies. However, their predictive performance when applied in everyday clinical practice has not been investigated. We studied the prognostic accuracy and the interrater agreement when standardized EEG patterns were analysed and compared to neurological outcome in a patient cohort at a tertiary centre not involved in the original study of the standardized EEG pattern classification.

METHODS

Comatose patients treated for out-of-hospital cardiac arrest were included. Poor outcome was defined as Cerebral Performance Category 3-5. Two senior consultants and one resident in clinical neurophysiology, blinded to clinical data and outcome, independently reviewed their EEG registrations and categorised the pattern as "highly malignant", "malignant" or "benign". These categories were compared to neurological outcome at hospital discharge. Interrater agreement was assessed using Cohen's Kappa.

RESULTS

In total, 62 patients were included. The median (IQR) time to EEG was 59 (42-91) h after return of spontaneous circulation. Poor outcome was found in 52 (84%) patients. In 21 patients at least one of the raters considered the EEG to contain a "highly malignant" pattern, all with poor outcome (42% sensitivity, 100% specificity). The interrater agreement varied from kappa 0.62 to 0.29.

CONCLUSION

"Highly malignant" patterns predict poor neurological outcome with a high specificity in everyday practice. However, interrater agreement may vary substantially even between experienced EEG interpreters.

摘要

简介

脑电图(EEG)用于心脏骤停后的神经预后。根据 Westhall 分类的“高度恶性”脑电图模式在最近研究的协议中具有高特异性,可预测不良神经结局。然而,当应用于日常临床实践时,其预测性能尚未得到研究。我们研究了在未参与标准化脑电图模式分类原始研究的三级中心的患者队列中,当分析和比较标准化脑电图模式与神经结局时,其预后准确性和观察者间一致性。

方法

纳入接受院外心脏骤停治疗的昏迷患者。不良结局定义为脑功能预后分类 3-5 级。两名高级顾问和一名临床神经生理学住院医师,对临床数据和结局不知情,独立审查了他们的脑电图记录,并将模式分类为“高度恶性”、“恶性”或“良性”。这些类别与出院时的神经结局进行了比较。观察者间一致性使用 Cohen's Kappa 进行评估。

结果

共纳入 62 例患者。自主循环恢复后脑电图的中位数(IQR)时间为 59(42-91)小时。52 例(84%)患者预后不良。在 21 例患者中,至少有一位观察者认为脑电图存在“高度恶性”模式,所有患者预后均不良(42%的敏感性,100%的特异性)。观察者间一致性从 kappa 值 0.62 到 0.29 不等。

结论

“高度恶性”模式在日常实践中具有高度特异性预测不良神经结局。然而,即使在经验丰富的脑电图解释者之间,观察者间的一致性也可能存在很大差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验