Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695 019, India.
Phys Chem Chem Phys. 2021 Jun 23;23(24):13662-13671. doi: 10.1039/d1cp00754h.
Among the various carbon capture and storage (CCS) technologies, the direct air capture (DAC) of CO2 by engineered chemical reactions on suitable adsorbents has attained more attention in recent times. Guanidine (G) is one of such promising adsorbent molecules for CO2 capture. Recently Lee et al. (Phys. Chem. Chem. Phys., 2015, 17, 10925-10933) reported an interaction energy (ΔE) of -5.5 kcal mol-1 for the GCO2 complex at the CCSD(T)/CBS level, which was one of the best non-covalent interactions observed for CO2 among several functional molecules. Here we show that the non-covalent GCO2 complex can transform to a strongly interacting G-CO2 covalent complex under the influence of multiple molecules of G and CO2. The study, conducted at M06-2X/6-311++G** level density functional theory, shows ΔE = -5.7 kcal mol-1 for GCO2 with an NC distance of 2.688 Å while almost a five-fold increase in ΔE (-27.5 kcal mol-1) is observed for the (G-CO2)8 cluster wherein the N-C distance is 1.444 Å. All the (G-CO2)n clusters (n = 2-10) show a strong N-CO2 covalent interaction with the N-C distance gradually decreasing from 1.479 Å for n = 2 to 1.444 Å for n = 8 ≅ 9, 10. The N-CO2 bonding gives (G+)-(CO2-) zwitterion character for G-CO2 and the charge-separated units preferred a cyclic arrangement in (G-CO2)n clusters due to the support of three strong intermolecular OHN hydrogen bonds from every CO2. The OHN interaction is also enhanced with an increase in the size of the cluster up to n = 8. The high ΔE is attributed to the large cooperativity associated with the N-CO2 and OHN interactions. The quantum theory of atoms in molecules (QTAIM) analysis confirms the nature and strength of such interactions, and finds that the total interaction energy is directly related to the sum of the electron density at the bond critical points of N-CO2 and OHN interactions. Further, molecular electrostatic potential analysis shows that the cyclic cluster is stabilized due to the delocalization of charges accumulated on the (G+)-(CO2-) zwitterion via multiple OHN interactions. The cyclic (G-CO2)n cluster formation is a highly exergonic process, which reveals the high CO2 adsorption capability of guanidine.
在各种碳捕获和储存 (CCS) 技术中,通过合适的吸附剂上的工程化学反应直接捕获 (DAC) CO2 最近引起了更多关注。胍 (G) 是 CO2 捕获的一种很有前途的吸附剂分子。最近,Lee 等人(Phys. Chem. Chem. Phys.,2015,17,10925-10933)报道了在 CCSD(T)/CBS 水平下 GCO2 配合物的相互作用能 (ΔE) 为 -5.5 kcal mol-1,这是在几种功能分子中观察到的 CO2 最好的非共价相互作用之一。在这里,我们表明,在 G 和 CO2 的多个分子的影响下,非共价的 GCO2 配合物可以转化为强相互作用的 G-CO2 共价配合物。这项在 M06-2X/6-311++G** 密度泛函理论水平上进行的研究表明,对于具有 2.688 Å 的 NC 距离的 GCO2,ΔE 为 -5.7 kcal mol-1,而对于具有 1.444 Å 的 N-C 距离的 (G-CO2)8 簇,ΔE 增加了近五倍(-27.5 kcal mol-1)。所有 (G-CO2)n 簇(n = 2-10)都表现出强烈的 N-CO2 共价相互作用,N-C 距离逐渐从 n = 2 的 1.479 Å 降低到 n = 8 的 1.444 Å ≅ 9,10。N-CO2 键赋予 G-CO2 (G+)-(CO2-) 两性离子特征,由于每个 CO2 都有三个强的 OHN 氢键的支持,电荷分离单元在 (G-CO2)n 簇中优先采用环状排列。随着簇尺寸增加到 n = 8,OHN 相互作用也得到增强。高ΔE 归因于与 N-CO2 和 OHN 相互作用相关的大协同作用。原子在分子中的量子理论 (QTAIM) 分析证实了这种相互作用的性质和强度,并发现总相互作用能直接与 N-CO2 和 OHN 相互作用的键临界点处电子密度的总和有关。此外,分子静电势能分析表明,由于通过多个 OHN 相互作用在 (G+)-(CO2-) 两性离子上累积的电荷的离域化,环状簇得到稳定。环状 (G-CO2)n 簇的形成是一个高度放热的过程,这揭示了胍对 CO2 的高吸附能力。