Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India.
Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa.
J Cell Biochem. 2021 Oct;122(10):1445-1459. doi: 10.1002/jcb.30022. Epub 2021 Jun 14.
MAP/microtubule affinity-regulating kinase 4 (MARK4) is a member of serine/threonine kinase family and considered an attractive drug target for many diseases. Screening of Indian Medicinal Plants, Phytochemistry, and Therapeutics (IMPPAT) using virtual high-throughput screening coupled with enzyme assay suggested that Naringenin (NAG) could be a potent inhibitor of MARK4. Structure-based molecular docking analysis showed that NAG binds to the critical residues found in the active site pocket of MARK4. Furthermore, molecular dynamics (MD) simulation studies for 100 ns have delineated the binding mechanism of NAG to MARK4. Results of MD simulation suggested that binding of NAG further stabilizes the structure of MARK4 by forming a stable complex. In addition, no significant conformational change in the MARK4 structure was observed. Fluorescence binding and isothermal titration calorimetric measurements revealed an excellent binding affinity of NAG to MARK4 with a binding constant (K) = 0.13 × 10 M obtained from fluorescence binding studies. Further, enzyme inhibition studies showed that NAG has an admirable IC value of 4.11 µM for MARK4. Together, these findings suggest that NAG could be an effective MARK4 inhibitor that can potentially be used to treat cancer and neurodegenerative diseases.
丝氨酸/苏氨酸激酶家族成员 MAP/微管亲和调节激酶 4(MARK4)被认为是许多疾病有吸引力的药物靶点。使用虚拟高通量筛选与酶分析相结合的印度药用植物筛选、植物化学和治疗学(IMPPAT)筛选表明,柚皮素(NAG)可能是 MARK4 的有效抑制剂。基于结构的分子对接分析表明,NAG 结合到 MARK4 活性位点口袋中发现的关键残基。此外,100ns 的分子动力学(MD)模拟研究阐明了 NAG 与 MARK4 的结合机制。MD 模拟结果表明,NAG 的结合通过形成稳定的复合物进一步稳定 MARK4 的结构。此外,未观察到 MARK4 结构的明显构象变化。荧光结合和等温滴定量热法测量显示 NAG 与 MARK4 具有极好的结合亲和力,荧光结合研究得到的结合常数(K)为 0.13×10 M。此外,酶抑制研究表明,NAG 对 MARK4 的 IC 值为 4.11µM。综上所述,这些发现表明,NAG 可能是一种有效的 MARK4 抑制剂,可用于治疗癌症和神经退行性疾病。
J Mol Graph Model. 2015-11
Sci Rep. 2020-6-25
Curr Alzheimer Res. 2024